Dedicated Message Passing
Hardware

Motivation:

* Memory sharing is slow
* Assumes that you want read and write
* |f you only need (Read | Write) performance

can be better

Strategy

* Introduce new coprocessor registers which

have the following API:
Register 23: Write: Set Target Read: Target Busy

Register 24: Write: Send to Target Read: Read from target
Register 25: Write: deq from target Read: Recieve Empty

Where
Corelndex target sets who we are going to enqg/deq/read from.

Implementation

e We make a:

Vector##f(NumCores,Vector#f(NumCores, Fifo#(2, Data))) ipc_write
<- replicateM(replicateM(mkCFFifo));

Vector#(NumCores,Vector#(NumCores, Fifo#(2, Data))) ipc_read
= transpose(ipc_write);

And pass ipc_*[core_id] to each core

(* synthesize *) goes away ®

But if synthesize didn’t go away, where we deqg/enq would
always block so this isn’t so bad!

Part | | Bugs

Using the response Register data in
the NBCache FSM

* Most of the data should come from the entry
in stg/ldbuff

Not Bypassing to stq in NBCache FSM

Out of Order Stq resp

* Might receive out of order stq response

Debugging Tips

Don’t use ?

 We said in class use unpack(0), but I’d instead
advise using funny-constants (Oxdeadbeef,
0x13371337, OxBAADFOOD, etc

)

* This will let you see where data you don’t care
about is getting injected more specifically

Print out Cycles using Cop

e Let’s you more easily look at the sim output
and see where exactly problems start

Learn Bluespec

 We didn’t use a lot of the really cool fun
features of BSV too heavily in class

ie, print rule from Stq

rule debuglinfo(isValid(core_id));

return (action
let i = fromInteger(x);
if (engP > degP && i< enqP && i >= deqP)
Sfwrite(stdout, " ", fshow(data), " ");
else if(enqP < deqP && (i>=deqP || i<engP))
Sfwrite(stdout, " ", fshow(data), " ");
else if(full_reg)
Sfwrite(stdout, " ", fshow(data), " "); endaction);endfunction
Sfwrite(stdout, "StQ: Core ID: ", fshow(core_id));

Sfwrite(stdout, "\n");
endrule

Look for unconditional Behaviors

* |f you are always doing something, be sure
yvou always do actually want to do it
— in the rule handling response, were

unconditionally upgrading the data line, not just
onl->(msi>|)

— We caught this by using the hexspeak codes
suggested earlier

Use assertions:

if (! trueThing) begin
Sdisplay(“invariant x broken”);
Sfinish:;

end

