
4	

5	

6	7	0	

1	

2	 3	



Who	Are	You?	
•  You	know	

–  Computer	Science	Basics	(Big	O,	data	structures,	basic	crypto,	etc)	
–  Computer	System	Basics	(unix,	bash,	git/github,	etc)	
–  Bitcoin	Basics	(transacJons,	blocks,	PoW,	etc)	

•  You	can	
–  Code	in	any	language	proficiently	

•  You	have	
–  Free	Jme	

•  You	want	
–  To	work	on	core	bitcoin	protocols	



Not	you?	
•  Sorry!	



Who	am	I?	
•  Co-Founder	of	MIT	DCI	
•  MIT	Bitcoin	Project	
•  Bitcoin	Core	Contributor	
•  Freelance	work	
•  MIT	SB	CS	‘16,	MEng	EECS	’16	
•  Contact:		

–  twi]er:	@JeremyRubin	
–  email:	jr@mit.edu		
–  LineID:	jeremyrubin	



So	You	Want	to	Be	a	Bitcoin	Developer	

•  FoundaJons	
•  Development	Environment	
•  Beginning	to	Code	Bitcoin	
•  ContribuJng	
•  General	Advice	



FOUNDATIONS	



Understand	Development	Philosophy	

•  Respect	all	kinds	of	Bitcoin	users	
•  Scratch	your	own	itch	
•  Bitcoin	use	is	free	speech	
•  Slow	and	steady	
•  Not	everyone	has	same	goal	for	project	



CommunicaJons	
•  Join	bitcoincore.slack.com	
•  IRC	channels	
–  #bitcoin,	#bitcoin-wizards,	#bitcoin-core-dev	
– Weekly	meeJng	in	#bitcoin-core-dev	

•  Follow	github.com/bitcoin/bitcoin		
•  Join	Linux	FoundaJon	mailing	lists	
–  bitcoin-core-dev,	bitcoin-dev,	bitcoin-discuss	

•  Bitcoin	StackExchange		



CommunicaJons	
•  Someone	already	probably	asked	your	
quesJon	somewhere!	

•  Be	respechul	of	what	other	people	want	to	
discuss,	don’t	‘demand’	answers	



DEVELOPMENT	ENVIRONMENT	



Hardware	&	System	
•  Recommend	using	an	Ubuntu	LTS	16.04	
•  You’ll	want	200+	GB	free	space	
•  Recommend:	4+	cores,	8+GB	RAM	
– Bitcoin	can	run	on	less,	but	building	is	slow!	



Fork,	Clone,	Build	
•  	`git	clone	git@github.com:bitcoin/bitcoin.git`		
– or	your	own	fork!	

•  	`git	checkout	–b	my-devel-branch`	
•  Follow	build	instrucJons	(first	build	is	slow)	



Run	Bitcoin	Nodes	
•  Copy	the	binaries	you	just	compiled	
– src/bitcoind	and	src/bitcoin-cli	

•  	`./bitcoind	-debug=bench`	will	run	a	node,	
use	`./bitcoin-cli`	to	test	it	

•  Testnet	node:	`./bitcoind	-testnet	-
debug=bench`,	`./bitcoin-cli	-testnet`		



Using	ctags	
•  Bitcoin	has	a	lot	of	code!	ctags	helps	you	browse	
it	quickly	

•  Vim	specific,	but	Emacs/your	favorite	editor		has	
equivalent	
–  	`ctags	–R	.`	in	src	dir	to	generate		
– Hit	`C-]`	in	vim	to	jump	to	definiJon,	`:ts`	to	select	if	
there	are	mulJple	possible	locaJons	

– Hit	`C-t`	to	go	back	to	prior	locaJon	



BEGINNING	TO	CODE	BITCOIN	



Pick	a	Good	“Bad	Idea”	
•  My	First	Project	
–  Randomize	order	of	a	databases	entries	to	prevent		DoS	on	
bad	DB	access	pa]ern	

–  Implemented	a	proof	of	concept	
–  Asked	a	developer	for	feedback	

•  Bad	
–  We	may	eventually	want	DB	iterable	in	order	
–  Couldn’t	demonstrate	an	example	of	bad	access	pa]ern	

•  Good	
–  Learning	experience	



Build	C++	ExperJse	
•  Bitcoin	is	wri]en	in	C++11	
•  Learn	C++11	well	as	you	

start	(first	~25	chapters	or	
so,	a	chapter	or	two	a	
day)	

•  cppreference.com!	
•  C++:	“easy”	to	read,	

“hard”	to	write	



Use	gdb	
•  Too	complicated	to	get	into	here	
•  Basically	
– See	what	your	code	is	doing	step-by-step	
– Find	bugs	
–  Inspect	running	programs	



Review	Others’	Code	
•  Look	through	github.com/bitcoin/bitcoin/pulls	
•  You’ll	learn	
– What	topics	people	are	working	on	
– How	people	communicate	feedback	
– What	kinds	of	feedback	people	get	

•  If	you	leave	useful	feedback	for	someone,	they	
will	be	happy	



TesJng	Bitcoin	
•  	`make	check`	runs	unit	tests	
•  	`./qa/pull-tester/rpc-tests.py`	to	run	rpc	tests	
•  Enable	Travis	CI	on	your	fork	for	tesJng	to	
happen	automaJcally	



Improve	the	GUI	





Performance	Improvements	
•  Pick	a	PR	that	seems	to	impact	performance	
and	try	to	measure	if	it	is	be]er	or	worse	

•  Can	you	improve	it?	
•  Example:	txChanged	



🔒	

🔓





Quick	‘N	Dirty	Fix	



Full	Fix	



CONTRIBUTING	



Important	ContribuJons	to	Bitcoin	
•  DocumentaJon	
•  Novel	ideas	and	research	
•  Review	others’	code	&	ideas	
•  Rigorous	TesJng	
•  Conference/Community	organizing	
•  Tools	for	developers	
•  Write	new	code!	



Write	Good	Code	
1.  Find	an	issue	that	you	think	is	important	
2.  Write	

1.  Patches	that	you	think	solves	it	
2.  Clear	documentaJon	
3.  Tests	that	cover	the	code	

3.  Push	to	a	branch	on	your	fork	



Seek	Early	Feedback	
•  Write	a	message	to:	
– A	Bitcoin	contributor	who	works	on	similar	things	
–  TheBlueMa],	theuni,	jonasschnelli,	and	myself	are	
friendly	default	contacts	

–  ping	#bitcoin-core-dev	with	a	request	for	feedback	
•  Be	gracious!	NegaJvity	on	your	work	is	not	
negaJvity	to	you!	



Run	New	Nodes	
•  Main	and	test	net	
– Recommend	using	a	different	server	
– Compare	debug	logs	to	compare	to	your	default	
nodes.	Is	your	version	be]er/correct?	



Restructuring	Code	Changes	
•  Tests	should	be	a	separate	commit	
–  Either	‘Tests	awer	Code’	or	‘Code	awer	Tests’	

•  Small	commits	that	individually	make	sense	
–  SomeJmes	you	rewrite	code	you	don’t	actually	need	to	
make	that	work	

•  Don’t	pack	too	much	in	one	pull-request	
–  Be]er	to	leave	a	10x	improvement	to	an	iniJal	2x	and	a	
follow	up	5x	later	

•  	`git	rebase	–i`	is	your	friend	



Open	a	Pull-Request	on	Github	
•  Make	sure	Travis	is	enabled	and	passing	on	your	
fork	for	your	branch	

•  Write	up	a	few	paragraphs	moJvaJng	and	
describing	the	changes	

•  Look	at	other	merged	PRs	for	examples	



WaiJng	Game	
•  Review	takes	Jme!	
•  Respond	to	feedback	as	you	get	it	



Your	First	ContribuJon	
•  Experience	Bitcoin	PR	process	with	low	stakes	
trial	

•  Try	to	
– Add	documentaJon	
– Add	tests	
– Fix	typos	



GENERAL	ADVICE	



Good	to	Read	
•  Bitcoin	SoK	Paper	[Felten	et	al.]	
•  Pull	Requests/Issues	on	Repo	
•  Bitcoin	Improvement	Proposal	notes	[BIPs]	
•  Kanzure’s	Archive	[diyhpl.us/~bryan/papers2/bitcoin]	
•  Peter	Todd’s	Blog	[petertodd.org]	
•  Computer	Systems	Security	(6.858,	6.857,	6.875)	[css.csail.mit.edu]	
•  Game	Theory	with	Engineering	ApplicaJons	[OCW]	
•  Follow	CCS/Oakland/Crypto/FC/…	conferences	
•  Twi]er	



Bad	to	Read	
•  Mostly	Avoid:	
– Comments	on	reddit	
– ArJcles	in	NYT/Economist/etc	about	Bitcoin	
development	

•  There’s	enough	“Good	to	Read”	to	keep	you	
busy	and	happy!	



Socialize	
•  Lots	of	really	great	people	to	talk	to!	
•  Go	to	Scaling	Bitcoin	conference	
•  Local	Bitcoin	Meetups	(SF	Bitcoin	Devs)	
•  Twi]er	



Be	PaJent	
•  Bitcoin	is	security	focused	sowware	
– Development	will	be	slow…	
– Developers	will	nitpick	your	code…	
– Broken	code	will	upset	you…	
– but…	Your	work	is	high	impact!	



THANKS	


