>

From Bitcoiner
to
Bitcoin Developer

Who Are You?

You know
— Computer Science Basics (Big O, data structures, basic crypto, etc)
— Computer System Basics (unix, bash, git/github, etc)
— Bitcoin Basics (transactions, blocks, PoW, etc)
You can
— Code in any language proficiently
You have
— Free time
You want
— To work on core bitcoin protocols

Not you?

* Sorry!

Who am I?

Co-Founder of MIT DCI

MIT Bitcoin Project

Bitcoin Core Contributor
Freelance work

MIT SB CS ‘16, MEng EECS '16

Contact:

— twitter: @JeremyRubin
— email: jr@mit.edu
— LinelD: jeremyrubin

So You Want to Be a Bitcoin Developer

* Foundations

* Development Environment
* Beginning to Code Bitcoin
* Contributing

* General Advice

FOUNDATIONS

Understand Development Philosophy

Respect all kinds of Bitcoin users
Scratch your own itch

Bitcoin use is free speech

Slow and steady

Not everyone has same goal for project

Communications

Join bitcoincore.slack.com
IRC channels
— #tbitcoin, #bitcoin-wizards, #bitcoin-core-dev
— Weekly meeting in #bitcoin-core-dev
Follow github.com/bitcoin/bitcoin
Join Linux Foundation mailing lists
— bitcoin-core-dev, bitcoin-dev, bitcoin-discuss
Bitcoin StackExchange

Communications

* Someone already probably asked your
guestion somewhere!

* Be respectful of what other people want to
discuss, don’t ‘demand’ answers

DEVELOPMENT ENVIRONMENT

Hardware & System

e Recommend using an Ubuntu LTS 16.04
* You'll want 200+ GB free space
e Recommend: 4+ cores, 8+GB RAM

— Bitcoin can run on less, but building is slow!

Fork, Clone, Build

* ‘git clone git@github.com:bitcoin/bitcoin.git’
— or your own fork!

e ‘git checkout —b my-devel-branch’
* Follow build instructions (first build is slow)

Run Bitcoin Nodes

* Copy the binaries you just compiled
— src/bitcoind and src/bitcoin-cli

* ./bitcoind -debug=bench” will run a node,
use "./bitcoin-cli’ to test it

 Testnet node: "./bitcoind -testnet -
debug=bench’, "./bitcoin-cli -testnet’

Using ctags

* Bitcoin has a lot of code! ctags helps you browse

it quickly
* Vim specific, but Emacs/your favorite editor has

equivalent

— ‘ctags —R . in src dir to generate

— Hit C-] in vim to jump to definition, :ts to select if

there are multiple possible locations
— Hit C-t to go back to prior location

BEGINNING TO CODE BITCOIN

Pick a Good “Bad Idea”

* My First Project

— Randomize order of a databases entries to prevent DoS on
bad DB access pattern

— Implemented a proof of concept

— Asked a developer for feedback

e Bad

— We may eventually want DB iterable in order
— Couldn’t demonstrate an example of bad access pattern

e Good

— Learning experience

Build C++ Expertise

Bitcoin is written in C++11

Learn C++11 well as you
start (first ~25 chapters or
so, a chapter or two a
day)

cppreference.com!
C++: “easy” to read,

)

“hard” to write BJARNE STROUSTRUP

THE CREATOR OF Cs+

Use gdb

* Too complicated to get into here

e Basically
— See what your code is doing step-by-step
— Find bugs

— Inspect running programs

Review Others’ Code

* Look through github.com/bitcoin/bitcoin/pulls

* You'll learn
— What topics people are working on
— How people communicate feedback
— What kinds of feedback people get

* If you leave useful feedback for someone, they
will be happy

Testing Bitcoin

* ‘make check runs unit tests
* "./ga/pull-tester/rpc-tests.py to run rpc tests

* Enable Travis Cl on your fork for testing to
happen automatically

Improve the GUI

All All Enter address or label to search Min amount
Date v Type Label Amount (BTC)
%4 | 10/1/16 01:10 Mined A (mjwYxtKWiZ1mZsGrUWxuVHbL4wQwu97Df9) 50.00000000
& 10/1/16 01:10 Mined A (mjwYxtKWiZ1mZsGrUWxuVHbL4wQwu97Df9) 50.00000000
>4 | 10/1/16 01:10 Mined A (mjwYxtKWiZ1mZsGrUWxuVHbL4wQwu97Df9) 50.00000000
¥~ 1 10/1/16 01:10 Mined A (mjwYxtKWiZ1mZsGrUWxuVHbL4wQwu97Df9) 50.00000000
¢ |10/1/16 01:10 Mined A (mjwYxtKWiZ1mZsGrUWxuVHbL4wQwu97Df9) 50.00000000
& 10/1/16 01:10 Mined A (mjwYxtKWiZ1mZsGrUWxuVHbL4wQwu97Df9) 50.00000000
& 1 10/1/16 01:10 Mined A (mjwYxtKWiZ1mZsGrUWxuVHbL4wQwu97Df9) 50.00000000
4 1 10/1/16 01:10 Mined A (mjwYxtKWiZ1mZsGrUWxuVHbL4wQwu97Df9) 50.00000000
¥% | 10/1/16 01:10 Mined A (mjwYxtKWiZ1mZsGrUWxuVHbL4wQwu97Df9) 50.00000000
& | 10/1/16 01:10 Mined A (mjwYxtKWiZ1mZsGrUWxuVHbL4wQwu97Df9) 50.00000000

diff --git a/src/qt/transactiontablemodel.cpp b/src/qt/transactiontablemodel.cpp

index b29ecf8..ba28338 100644

--- a/src/qt/transactiontablemodel. cpp

+++ b/src/qt/transactiontablemodel.cpp

@@ -462,6 +462,7 @@ QString TransactionTableModel: :formatTxAmount(const TransactionRecord *wtx, b
ool

QVariant TransactionTableModel: :txStatusDecoration(const TransactionRecord *wtx) const
{
+ char buf[256];
switch(wtx->status.status)
{
case TransactionStatus::0penUntilBlock:
@@ -483,7 +484,8 @@ QVariant TransactionTableModel::txStatusDecoration(const TransactionRecord *w
tx)
default: return QIcon(":/icons/transaction_5");
};
case TransactionStatus::Confirmed:
- return QIcon(":/icons/transaction_confirmed");
+ snprintf(buf, 256, ":/pokemon/%" PRIu64, l+(wtx->hash.GetUint64(0)%716));
+ return QIcon(buf);
case TransactionStatus::Conflicted:
return QIcon(":/icons/transaction_conflicted");
case TransactionStatus::Immature: {

Performance Improvements

* Pick a PR that seems to impact performance
and try to measure if it is better or worse

 Canyou improve it?
 Example: txChanged

2829

828

// Tell wallet about transactions that went from mempool +

2830 // to conflicted: 2829 | 4+ for(unsigned int i=8; i < pblock->vtx.size(); i++)

2831 BOOST_FOREACH(const CTransaction &tx, txConflicted) { 2830 + txChanged.push_back(std: :make_tuple(pblock->vtx[i], pindexNew, i));

2832 SyncWithWallets(tx, pindexNew, NULL);

2833 }

2834 // ... and about transactions that got confirmed:

2835 BOOST_FOREACH(const CTransaction &tx, pblock->vtx) {

2836 SyncWithWallets(tx, pindexNew, pblock);

2837 } @

3055 // Notifications/callbacks that can run without cs_main %9 // Notifications/callbacks that can run without cs_main
3051 | 4+
3052 | &+ // throw all transactions though the signal-interface
3053 | &+ // while _not_ holding the cs_main lock
3054 | &+ BOOST_FOREACH(const CTransaction &tx, txConflicted)
3055 | + {
3856 | 4+ SyncWithWallets(tx, pindexNewTip);
3057 | + }
3058 | 4+ // ... and about transactions that got confirmed:
3059 | &+ for(unsigned int i = @; i < txChanged.size(); i++)
3060 + SyncWithWallets(std::get<@>(txChanged[i]), std::get<1>

(txChanged[i]), std::get<2>(txChanged[i]));

3061 | +

2828 | 4

Ay B for(unsigned int i=8; i < pblock->vtx.size(); i++)
2830 4+ txChanged.push_back(std: :make_tuple(pblock->vtx[i], pindexNew, i));

int64_t nTime6 = GetTimeMicros(); nTimePostConnect += nTime6 - nTime5;

nTimeTotal += nTime6 - nTimel;
2833 LogPrint("bench”, " - Connect postprocess: ¥.2fms [¥.2fs]\n", (nTimeé -
nTime5) * ©2.801, nTimePostConnect * ©.080001);

Quick ‘N

for(unsigned int i=0; i < pblock->vtx.size(); i++)

rty Fix

for(unsigned int i=0; i < pblock->vtx.size(); i++)

- txChanged.push_back(std: :make_tuple(pblock->vtx[i], pindexNew, i)); 2838 - txChanged.emplace_back(pblock->vtx[i], pindexNew, i);
22 + std: :vector<std: :tuple<CTransaction,CBlockIndex*,int>> txChanged;
+ if (pblock)
+ txChanged.reserve(pblock->vtx.size());
do { do {
6 + txChanged.clear();

boost::this_thread::interruption_point();
if (ShutdownRequested())

break;

const CBlockIndex *pindexFork;
std::list<CTransaction> txConflicted;

3029 | - std: :vector<std::tuple<CTransaction,CBlockIndex*,int> > txChanged;

boost::this_thread::interruption_point();
if (ShutdownRequested())

break;

const CBlockIndex *pindexFork;

std::list<CTransaction> txConflicted;

2806

Full Fix

-bool static ConnectTip(CValidationState& state, const
CChainParams& chainparams, CBlockIndex* pindexNew, const
CBlock* pblock, std::vector<std::shared_ptr<const
CTransaction>> &txConflicted,

std::vector<std: :tuple<CTransaction,CBlockIndex*,int>>

&txChanged)

+ * Used to track conflicted transactions removed from mempool
and transactions

+ * applied to the UTXO state as a part of a single
ActivateBestChainStep call.

+ */

+struct ConnectTrace {

+ std: :vector<std: :shared_ptr<const CTransaction>>
txConflicted;

+ std: :vector<std: :pair<CBlockIndex*, std::shared_ptr<const

CBlock> > > blocksConnected;

+};

+bool static ConnectTip(CvalidationState& state, const
CChainParams& chainparams, CBlockIndex* pindexNew, const
std::shared_ptr<const CBlock>& pblock, ConnectTrace&

connectTrace)

CONTRIBUTING

Important Contributions to Bitcoin

Documentation

Novel ideas and research

Review others’ code & ideas
Rigorous Testing
Conference/Community organizing
Tools for developers

Write new code!

Write Good Code

1. Find an issue that you think is important

2. Write

1. Patches that you think solves it
2. Clear documentation

3. Tests that cover the code

3. Push to a branch on your fork

Seek Early Feedback

* Write a message to:
— A Bitcoin contributor who works on similar things

— TheBlueMatt, theuni, jonasschnelli, and myself are
friendly default contacts

— ping #bitcoin-core-dev with a request for feedback

* Be gracious! Negativity on your work is not
negativity to you!

Run New Nodes

* Main and test net
— Recommend using a different server

— Compare debug logs to compare to your default
nodes. Is your version better/correct?

Restructuring Code Changes

Tests should be a separate commit
— Either ‘Tests after Code’ or ‘Code after Tests’
Small commits that individually make sense

— Sometimes you rewrite code you don’t actually need to
make that work

Don’t pack too much in one pull-request

— Better to leave a 10x improvement to an initial 2x and a
follow up 5x later

‘git rebase —i " is your friend

Open a Pull-Request on Github

 Make sure Travis is enabled and passing on your
fork for your branch

cuckoocache-pull-request JeremyRubin v 0|64 Il New pull request m

cuckoocache-pull-request-not-squa. JeremyRubin X J| /0 11 New pull request @

* Write up a few paragraphs motivating and
describing the changes

* Look at other merged PRs for examples

Waiting Game

* Review takes time!
 Respond to feedback as you get it

Your First Contribution

* Experience Bitcoin PR process with low stakes
trial

* Try to
— Add documentation

— Add tests
— Fix typos

GENERAL ADVICE

Good to Read

Bitcoin SoK Paper [Felten et al.]

Pull Requests/Issues on Repo

Bitcoin Improvement Proposal notes [BIPs]

Kanzure’s Archive [diyhpl.us/~bryan/papers2/bitcoin]

Peter Todd’s Blog [petertodd.org]

Computer Systems Security (6.858, 6.857, 6.875) [css.csail.mit.edu]
Game Theory with Engineering Applications [OCW]

Follow CCS/Oakland/Crypto/FC/... conferences

Twitter

Bad to Read

* Mostly Avoid:
— Comments on reddit

— Articles in NYT/Economist/etc about Bitcoin
development

 There’s enough “Good to Read” to keep you
busy and happy!

Socialize

Lots of really great people to talk to!
Go to Scaling Bitcoin conference

Local Bitcoin Meetups (SF Bitcoin Devs)
Twitter

Be Patient

* Bitcoin is security focused software
— Development will be slow...
— Developers will nitpick your code...
— Broken code will upset you...
— but... Your work is high impact!

THANKS

