

delbrag*:
it’s like “bitvm” with
computation off chain

https://rubin.io/public/pdfs/delbrag.pdf

* garbled backwards

https://rubin.io/public/pdfs/delbrag.pdf

bitvm is cool
extra computation on chain is not

How to (half)-Garble Your Circuit

N
A
N
D

A0, A1 ⇒ H(A0), H(A1)

B0, B1 ⇒ H(B0), H(B1)

Secret Public

C0,C1

C1⊕ H(A0‖B0)
C1⊕ H(A1‖B0)
C1⊕ H(A0‖B1)

C0⊕ H(A1‖B1)

SecretPublic

How to (half)-Garble Your Circuit

N
A
N
D

A0, A1 ⇒ H(A0), H(A1)

B0, B1 ⇒ H(B0), H(B1)

Secret Public

C1⊕ H(A0‖B0)
C1⊕ H(A1‖B0)
C1⊕ H(A0‖B1)⊕ H(A0‖B1)= C1

C0⊕ H(A1‖B1)

SecretPublic

How to (half)-Garble Your Circuit

N
A
N
D

A0, A1 ⇒ H(A0), H(A1)

B0, B1 ⇒ H(B0), H(B1)

Secret Public

C1⊕ H(A0‖B0)
C1⊕ H(A1‖B0)
C1⊕ H(A0‖B1)

C0⊕ H(A1‖B1)⊕ H(A1‖B1)= C0

SecretPublic

H(C0), H(C1)

H(F0), H(F1)

C1⊕ H(A0‖B0)
C1⊕ H(A1‖B0)
C1⊕ H(A0‖B1)

C0⊕ H(A1‖B1)

F1⊕ H(D0‖E0)
F1⊕ H(D1‖E0)
F1⊕ H(D0‖E1)

F0⊕ H(D1‖E1)

How to (half)-Garble Your Circuit

N
A
N
D

A0, A1 ⇒ H(A0), H(A1)

B0, B1 ⇒ H(B0), H(B1)
C0,C1

N
A
N
D

D0, D1 ⇒ H(D0), H(D1)

E0, E1 ⇒ H(E0), H(E1)
F0,F1

N
A
N
D

G0,G1

G1⊕ H(C0‖F0)
G1⊕ H(C1‖F0)
G1⊕ H(C0‖F1)

G0⊕ H(C1‖F1)

H(C0), H(C1)

H(F0), H(F1)

C1⊕ H(A0‖B0)
C1⊕ H(A1‖B0)
C1⊕ H(A0‖B1)

C0⊕ H(A1‖B1)

F1⊕ H(D0‖E0)
F1⊕ H(D1‖E0)
F1⊕ H(D0‖E1)

F0⊕ H(D1‖E1)

How to (half)-Garble Your Circuit

N
A
N
D

A0, A1 ⇒ H(A0), H(A1)

B0, B1 ⇒ H(B0), H(B1)
C0,C1

N
A
N
D

D0, D1 ⇒ H(D0), H(D1)

E0, E1 ⇒ H(E0), H(E1)
F0,F1

N
A
N
D

G0,G1

G1⊕ H(C0‖F0)
G1⊕ H(C1‖F0)
G1⊕ H(C0‖F1)

G0⊕ H(C1‖F1)

CONSISTENCY CHECK

We need a proof that the circuit is made correctly

- Cut N’ Choose
- Inefficient

- ZKP
- Might be slow? Need numbers!

- Correct-by-Construction?

Grug-CONSISTENCY CHECK

Optimistic in script row-checks:

e.g. show that given

H(A_0) and H(B_1)

H(C_1 xor H(A_0 || B_1)) == PRECOMP(H(C_1))

use H=sha256, blake

Reduce to 128-bit for only 2nd preimage resistance for perf

Requires a few minutes of hashing, can be during download, but is secure.

N.b. ensure length checks/fixed length hashes

OP_CAT + OP_XOR would make much more efficient!

(DRAFT) Bob Garbles CONSISTENCY CHECK

Alice creates a homomorphic key K, and sends Bob an
encrypted seed S.

Bob creates a gate of i j k, encrypted:

A0 = H(S || i || 0), A1 = H(S || i || 1)

B0 = H(S || j || 0), B1 = H(S || j || 1)

C0 = H(S || k || 0), C1 = H(S || k || 1)

rows: C1⊕ H(A0‖B0), C1⊕ H(A0‖B1), C1⊕ H(A1‖B0), C0⊕ H(A1‖B1)

Alice decrypts, reconstructs, checks equality, sends dec key

Bob decrypts.

Cost-Per-Gate?

Input: 32 Bytes * 4 + 32 Bytes * 2
Output: 4 * 32 Bytes

Proof overhead: ?

Cost-Per-Gate?

Why Half-Garbling?

Traditional “Garbling” also involves exchanging inputs…

We don’t care about that here.

Summary So Far:

- We have built a way for Alice to make a function for Bob:

𝝋(X) ⇒ Y::CommitReveal[0,1]

- After Alice reveals X, Bob can compute 𝝋 learning Y0 or
Y1

Connecting Back to Bitcoin

Output δ = SEND 1 BTC to:

Tr(MuSig2(Alice, Bob),{

<H(Y_0)> SHA256 EQUALVERIFY <Bob> CHECKSIG,

<N> CSV <Alice> CHECKSIG

})

What do we have now?

Alice creates 𝝋(X) ⇒ Y and sends to Bob

Alice creates output δ and sends to Bob (incl Descriptor)

If Alice publishes data Q for X, if 𝝋(Q)= 0, Bob can Punish

At any time…

Alice & Bob can cooperate

After a delay, Alice refunded

THE CIRCUIT EVALUATION IS ALL OFF-CHAIN

VARIANT:

Output δ = SEND 1 BTC to:

Tr(MuSig2(Alice, Bob),{

<H(Y_0)> SHA256 EQUALVERIFY <Bob> CHECKSIG,

<N> CSV <Alice> CHECKSIGVERIFY <Bob> CHECKSIG

})

Bob presigns Alice’s refund tx

VARIANT:

Output δ = SEND 1 BTC to:

Tr(MuSig2(Alice, Bob),{

<H(Y_0)> SHA256 EQUALVERIFY <Bob> CHECKSIGVERIFY

<Alice> CHECKSIG,

<N> CSV <Alice> CHECKSIG

})

Alice Presigns Bob’s punishment

VARIANT: Grug-Consistency
Output δ = SEND 1 BTC to: Tr(MuSig2(Alice, Bob),{

<H(Y_0)> SHA256 EQUALVERIFY <Bob> CHECKSIGVERIFY,

<Bob> CHECSKIGVERIFY ∀R ∈ circuit truth table rows, a leaf with:

VOP_DUP VOP_TOALT VOP_BLAKE VOP_TOALT \\ get R→Ax , BLAKE(R→Ax) on AltStack

VOP_DUP VOP_TOALT VOP_BLAKE VOP_TOALT \\ get R→By , BLAKE(R→By) on AltStack

VOP_ALT_ABCD_TO_ALT_BD_REG_AC \\ alt: BLAKE(R→Ax)BLAKE(R→By), reg:R→Ax R→By

VOP_CAT VOP_BLAKE VOP_TOALT \\ alt: BLAKE(R→Ax)BLAKE(R→By)BLAKE(R→Ax||R→By)

VOP_DUP VOP_TOALT VOP_BLAKE VOP_TOALT \\ alt: BLAKE(R→Ax)BLAKE(R→By)BLAKE(R→Ax||R→By) R→Cx NAND Y BLAKE(R→Cx NAND y)

VOP_ALT_ABC_TO_ALT_C_REG_AB \\ alt: BLAKE(R→Ax)BLAKE(R→By)BLAKE(R→Cx NAND y) reg: BLAKE(R→Ax||R→By) R→Cx NAND Y

VOP_XOR \\ alt: BLAKE(R→Ax)BLAKE(R→By)BLAKE(R→Cx NAND y) reg: <BLAKE(R→Ax||R→By) xor R→Cx NAND Y >

<PRECOMP(BLAKE(R→Ax||R→By) xor R→Cx NAND Y))> VOP_EQUALVERIFY // Check the ciphertext is the gate’s

VOP_FROMALT <PRECOMP(BLAKE(R→Cx NAND y))> VOP_NOTEQUALVERIFY // fraud check the output wire

VOP_FROMALT <PRECOMP(BLAKE(R→Ax))> VOP_OTEQUALVERIFY // check the input was correct

VOP_FROMALT <PRECOMP(BLAKE(R→By))> VOP_NOTEQUALVERIFY // check the input was correct,

<N> CSV <Alice> CHECKSIG

})

Data
independent
prefix

𝚪δ: 𝚪arbleδ δelbra𝚪

Let 𝚪 be the Gnostic input.

TR(Musig2(Alice, Bob),{

∀Xi ∈ X…

SHA256 DUP

<H(Xi0)> EQUAL NOTIF <H(X
i
1)> EQUALVERIFY ENDIF

<Alice> <Bob> CHECKSIG,

<T> CLTV [optional <Alice> CHECKSIGVERIFY] <Bob> CHECKSIG

})

𝚪δ: 𝚪arbleδ δelbra𝚪

Let δ be the diploma input (i.e., a certificate of knowledge)

reminder:

TR(Musig2(Alice, Bob),{

<N> CSV <Alice> CHECKSIG,

SHA256 <Y_0> EQUALVERIFY <Bob> CHECKSIG

})

δ

Creating δ means that:

input data X must have been revealed

Back to Delbrag-ity
One-Shot Delbrag Protocol

𝚪

F
u
n
d

Alice

Bob

Alice’s
Change

⏎Bob +
<Tproove> CSV

Bob’s
Change

Bob
refnd

One-Shot Delbrag

θ δ

𝚪

F
u
n
d

Alice

Bob

Alice’s
Change

⏎Bob +
<Tproove> CSV

Bob’s
Change

Alice +
<T publish> CSV

Bob +
PreImage

Bob
jstc

Bob
refnd

Alice
jstc

One-Shot Delbrag

θ δ

𝚪

F
u
n
d

Alice

Bob

Alice’s
Change

⏎Bob +
<Tproove> CSV

Bob’s
Change

Alice +
<T publish> CSV

Bob +
PreImage

Bob
jstc1

Bob
refnd

Alice
jstc

One-Shot Delbrag

bad garbling Bob
jstc2

θ δ

𝚪

F
u
n
d

Alice

Bob

Alice’s
Change

⏎Bob +
<Tproove> CSV

Bob’s
Change

Alice +
<T publish> CSV

Bob +
PreImage

Bob
jstc

Bob
refnd

Alice
jstc

One-Shot Delbrag

θ δ

𝚪

F
u
n
d

Alice

Bob

Alice’s
Change

Missing: Q in X
pre-signed: Alice+Bob

⏎Bob +
<Tproove> CSV

Bob’s
Change

Alice +
<T publish> CSV

Bob +
PreImage

Bob
jstc

Bob
refnd

Alice
jstc

One-Shot Delbrag

θ δ

𝚪

F
u
n
d

Alice

Bob

Alice’s
Change

Missing: Q in X
pre-signed: Alice+Bob

X ← Σ

𝝋(Σ)

𝝋(X)

⏎Bob +
<Tproove> CSV

Bob’s
Change

Alice +
<T publish> CSV

Bob +
𝝋(Σ)= 0

Bob
jstc

Bob
refnd

Alice
jstc

One-Shot Delbrag

Engineering 𝝋(X)

X:

- Σ: partially signed spending txn(s)
- Spending output δ
- Signed by Alice

- Additional “Witness” Data, e.g.:
- info Bob would need to redeem
- a ZKP

θ δ

𝚪

F
u
n
d

Alice

Bob

Alice’s
Change

Missing: Q in X
pre-signed: Alice+Bob

X ← Σ

𝝋(Σ)

𝝋(X)

⏎Bob +
<Tproove> CSV

Bob’s
Change

Alice +
<T publish> CSV

Bob +
𝝋(Σ)= 0

Bob
jstc

Bob
refnd

Alice
jstc

One-Shot Delbrag

Alice

Bob

θ δ

𝚪

F
u
n
d

Alice

Bob

Alice’s
Change

Missing: Q in X
pre-signed: Alice+Bob

X ← Σ

𝝋(Σ)

𝝋(X)

⏎Bob +
<Tproove> CSV

Bob’s
Change

Alice +
<T publish> CSV

Bob +
𝝋(Σ)= 0

Bob
jstc

Bob
refnd

Alice
jstc

One-Shot Delbrag

Alice

Bob

��

θ δ

𝚪

F
u
n
d

Alice

Bob

Alice’s
Change

Missing: Q in X
pre-signed: Alice+Bob

X ← Σ

𝝋(Σ)

𝝋(X)

⏎Bob +
<Tproove> CSV

Bob’s
Change

Alice +
<T publish> CSV

Bob +
𝝋(Σ)= 0

Bob
jstc

Bob
refnd

Alice
jstc

One-Shot Delbrag

Alice

Bob

⛓

θ δ

𝚪

F
u
n
d

Alice

Bob

Alice’s
Change

Missing: Q in X
pre-signed: Alice+Bob

X ← Σ

𝝋(Σ)

𝝋(X)

PreSig: Alice
Missing: Bob

⏎Bob +
<Tproove> CSV

Σ

Bob’s
Change

Alice +
<T publish> CSV

Bob +
𝝋(Σ)= 0

Alice
dist

Bob
dist

Bob
jstc

Bob
refnd

Alice
jstc

One-Shot Delbrag

Alice

Bob

⛓

θ δ

𝚪

F
u
n
d

Alice

Bob

Alice’s
Change

Missing: Q in X
pre-signed: Alice+Bob

X ← Σ

𝝋(Σ)

𝝋(X)

PreSig: Alice
Missing: Bob

⏎Bob +
<Tproove> CSV

Σ

Bob’s
Change

Alice +
<T publish> CSV

Bob +
𝝋(Σ)= 0

Alice
dist

Bob
dist

Bob
jstc

Bob
refnd

Alice
jstc

One-Shot Delbrag

Alice

Bob

⛓

θ δ

𝚪

F
u
n
d

Alice

Bob

Alice’s
Change

Missing: Q in X
pre-signed: Alice+Bob

X ← Σ

𝝋(Σ)

𝝋(X)

PreSig: Alice
Missing: Bob

⏎Bob +
<Tproove> CSV

Σ

Bob’s
Change

Alice +
<T publish> CSV

Bob +
𝝋(Σ)= 0

Alice
dist

Bob
dist

Bob
jstc

Bob
refnd

Alice
jstc

One-Shot Delbrag

Alice

Bob

⛓

θ δ

𝚪

F
u
n
d

Alice

Bob

Alice’s
Change

Assigned: Q in X
pre-signed: Alice+Bob

X ← Σ

𝝋(Σ)

𝝋(X)

PreSig: Alice
Missing: Bob

⏎Bob +
<Tproove> CSV

Σ

Bob’s
Change

Alice +
<T publish> CSV

Bob +
𝝋(Σ)= 0

Alice
dist

Bob
dist

Bob
jstc

Bob
refnd

Alice
jstc

One-Shot Delbrag

Alice

Bob

��

⛓

θ δ

𝚪

F
u
n
d

Alice

Bob

Alice’s
Change

Assigned: Q in X
pre-signed: Alice+Bob

X ← Σ

𝝋(Σ)

𝝋(X)

⏎Bob +
<Tproove> CSV

Bob’s
Change

Bob +
𝝋(Σ)= 0

Bob
jstc

Bob
refnd

One-Shot Delbrag: 𝝋(Σ)= 0

Alice

Bob

��

⛓

⛓

θ δ

𝚪

F
u
n
d

Alice

Bob

Alice’s
Change

Assigned: Q in X
pre-signed: Alice+Bob

X ← Σ

𝝋(Σ)

𝝋(X)

PreSig: Alice
Missing: Bob

⏎Bob +
<Tproove> CSV

Σ

Bob’s
Change

Alice
dist

Bob
dist

Bob
refnd

One-Shot Delbrag:𝝋(Σ)= 1

Alice

Bob

⛓

⛓

θ δ

𝚪

F
u
n
d

Alice

Bob

Alice’s
Change

Assigned: Q in X
pre-signed: Alice+Bob

X ← Σ

𝝋(Σ)

𝝋(X)

PreSig: Alice
Signed: Bob

⏎Bob +
<Tproove> CSV

Σ

Bob’s
Change

Alice
dist

Bob
dist

Bob
refnd

One-Shot Delbrag:𝝋(Σ)= 1

Alice

Bob

��

⛓

⛓

θ δ

𝚪

F
u
n
d

Alice

Bob

Alice’s
Change

Assigned: Q in X
pre-signed: Alice+Bob

X ← Σ

𝝋(Σ)

𝝋(X)

⏎Bob +
<Tproove> CSV

Bob’s
Change

Alice +
<T publish> CSV

Bob
refnd

Alice
jstc

One-Shot Delbrag: Bob DoS

Alice

Bob

��

⛓

⛓

θ δ

𝚪

F
u
n
d

Alice

Bob

Alice’s
Change

Missing: Q in X
pre-signed: Alice+Bob

X ← Σ

𝝋(Σ)

𝝋(X)

PreSig: Alice
Missing: Bob

⏎Bob +
<Tproove> CSV

Σ

Bob’s
Change

Alice +
<T publish> CSV

Bob +
𝝋(Σ)= 0

Alice
dist

Bob
dist

Bob
jstc

Bob
refnd

Alice
jstc

One-Shot Delbrag

Alice

Bob

Timing Analysis

𝚪
created

Δ = tx inclusion margin

Timing Analysis

𝚪
created

Tproove
Bob’s
Refund TX

Δ = tx inclusion margin

Timing Analysis

𝚪
created

Tproove
Bob’s
Refund TX

Tproove-Δ

Δ = tx inclusion margin

TX θ
broadcast

Timing Analysis

𝚪
created

Tproove
Bob’s
Refund TX

Tproove-Δ

Δ = tx inclusion margin

TX θ
mined

TX θ
broadcast

Timing Analysis

𝚪
created

Δ = tx inclusion margin

TX θ
mined

TX θ
broadcast

Timing Analysis

𝚪
created

Δ = tx inclusion margin

TX θ
mined

Tpublish
Alice’s
Justice TX

TX θ
broadcast

Tpublish-Δ

Timing Analysis

𝚪
created

Δ = tx inclusion margin

TX θ
mined

Tpublish
Alice’s
Justice TX

TX θ
broadcast

Bob’s Justice
(if Applicable)

broadcast

Tpublish-Δ

Timing Analysis

𝚪
created

Δ = tx inclusion margin

TX θ
mined

Tpublish
Alice’s
Justice TX

TX θ
broadcast

Bob’s Justice
(if Applicable)

broadcast

Bob’s Justice
(if Applicable)

mined

Tpublish-Δ

Timing Analysis

𝚪
created

Δ = tx inclusion margin

TX θ
mined

TX θ
broadcast

Bob’s Justice
(if Applicable)

broadcast

Bob’s Justice
(if Applicable)

mined

Timing Analysis

𝚪
created

Δ = tx inclusion margin

TX θ
mined

Tpublish
Alice’s
Justice TX

TX θ
broadcast

TX Σ
broadcast

Tpublish-Δ

Timing Analysis

𝚪
created

Δ = tx inclusion margin

TX θ
mined

Tpublish
Alice’s
Justice TX

TX θ
broadcast

TX Σ
broadcast

TX Σ
mined

Tpublish-Δ

Timing Analysis

𝚪
created

Δ = tx inclusion margin

TX θ
mined

TX θ
broadcast

TX Σ
broadcast

TX Σ
mined

Timing Analysis

𝚪
created

Δ = tx inclusion margin

TX θ
mined

Tpublish
Alice’s
Justice TX

TX θ
broadcast

Tpublish-Δ

Timing Analysis

𝚪
created

Tproove
Bob’s
Refund TX

Tproove-Δ

Δ = tx inclusion margin

TX θ
mined

Tpublish
Alice’s
Justice TX

TX θ
broadcast

Bob’s Justice
(if Applicable)

broadcast

Bob’s Justice
(if Applicable)

mined

TX Σ
broadcast

TX Σ
mined

Tpublish-Δ

Timing Analysis

𝚪
created

Tproove
Bob’s
Refund TX

Tproove-Δ

Δ = tx inclusion margin

TX θ
mined

Tpublish
Alice’s
Justice TX

TX θ
broadcast

Bob’s Justice
(if Applicable)

broadcast

Bob’s Justice
(if Applicable)

mined

TX Σ
broadcast

TX Σ
mined

Tpublish-Δ

Fund Security Analysis

If Alice “freezes” and never reveals data X:

Bob can claim back the refund TX (all the money or
presigned part)

If Bob “freezes” and never finalizes…

Alice can get her refund TX (all the money or presigned
default)

Bob punishes Alice if X is invalid (all the money or
presigned penalty)

Napkin Math: On-Chain Performance Numbers

Naive Per Gate:

32 + 32 + 32 = 96 bytes per bit of input

200 byte close TX * 8 bits / byte * 96 bytes per bit =

 ~153,600 bytes witness data

38400 vBytes ⇒ $40 to $80 USD

If willing to lose “1% fee” means min ~$6000 USD / 0.06BTC

Napkin Math: Off-Chain Numbers

32 x 2 bytes per wire

An average of one new wire per gate

If a SNARK is 10Bn Gates (seems high)

~ 640 GB of data to exchange off chain ⇒ $50

𝝋 Reexamined

- ZKP Verification, Fixes overall circuit size to constant
- Baking in anti-equivocation

Rather than an on-chain If Xi1 and X
i
0 revealed, encrypt

∀Xi ∈ X: Y0⊕ H(X
i
0‖Xi1)

- Encrypting X so only visible to Alice & Bob

ZK-𝝋

- Transaction must be plaintext
- Additional ZK proof can show e.g. a valid blockheader

with a certain height

Example Application: Bridge

- Bob represents a bridge, and Alice represents a
withdrawer. Alice posts collateral for her withdraw
request. Alice then requests a withdrawal bound to that
txid. Alice then has to provide proof that she started
the withdrawal on the sidechain. Bob provides the
requested funds. After Alice posts proof, she gets the
money.

Example Application: Hashrate Derivatives

Alice and Bob want to make a bet about Bitcoin Hashrate.

Alice bets that if you take run

F(Block(now-100)...Block(now+10,000)), a certain property will or will not hold,
and what the distributive tx should be in either case.

Then Alice and Bob fund mutually with C each.

Alice and Bob wait 10k blocks.

Alice then makes a ZK-proof for the dist. tx, and posts-to-close.

The dist said Alice gets 0.9C and Bob gets 1.1 C.

Alice posts proof and waits

- but Bob times out ⇒ Alice claims 2C
- Bob closes ⇒ claims 0.9C, Bob 1.1 C

Example Application: Vault

Bob is a deep cold storage Custodian for Alice.

Alice wants to withdraw money from the cold storage.

Alice requests a withdrawal from the custodial account.

Alice must satisfy the Vaults requirement, which is a proof
that no other coins in the vault have been moved in the last
month, and that it is authorized by her.

Bob reclaims the funds if Alice can’t prove, and sweeps a
penalty.

Example App: Decentralized Hash Buying Pool

Bob is a mining pool operator.

Alice wants to mine to Bob’s pool.

Bob fronts money to a delbrag instance for Alice, along with
Alice contributing a “griefing fee”.

Alice mines to an address that Bob made for Alice.

Alice rounds up all the workshares for the period, and proves the
total work done and drafts a withdrawal tx.

Alice publishes the withdrawal data.

Bob completes the payment to Alice (or Alice gets all the money).

Example App: Trustless Accelerator

Bob is a Bitcoin Business.

Alice is a miner.

Bob wants to buy a txn SLA from Alice, to guarantee tx
inclusion in K blocks, with a term of L>>K blocks.

Bob opens up w/ Alice a Delbrag, he contributes N BTC.

Bob sends Alice a TX F that he wants included, and signs it
with the last block hash and hash of history of requests. If
it looks good, Alice countersigns.

Alice collects all of his signed receipts and proves if the
Txns were mined within the SLA of when Alice signed from the
initial block to +L, and proposes Bob’s refund amount.

Example App: Swaps

Alice has some Bitcoin (or a e.g. Token) that Bob wants.

Bob wants to pay for it, but privately.

Bob funds a Delbrag with Alice (and a penalty fee from Alice).

Alice sets up the circuit for a n-deep proof-of-transfer after current height.

Alice pre-proposes a transfer (deviation from normal protocol)

Alice transfers the asset to Bob.

Alice then proves the transfer is mined in a n-deep block.

Alice submits her ZKP on-chain.

Bob either finalizes Alice’s transfer proposal, or shows the proof invalid and reclaims.

Or timeout and Alice claims.

Example App: Garbled Payment Channel

Alice and Bob want to do a payment channel.

They fund a Delbrag mutually.

Alice will commit to, in her data an nLockTime.

Out-of-band, Alice sends Bob new garbled circuits to reveal Y0 if
nLockTime is less than a certain value every time theres an update.
(partial re-garbling for efficiency)

Bob keeps just the latest one.

E.g. circuit can only fail if nLockTime < re-garbled(limit)

Basic Extensions

- Cooperative Closing
- Pre-Signed Justice / Refunds

Future Work

- Extending to Multi-Prover Multi-Verifier
- 𝚪δ-chains → splitting inputs into 𝚪-δ-𝚪-δ-𝚪-δ-𝚪-δ, in

cases where Alice is expected to likely be fraudulent,
can reduce data required to be published.
- These cases occur when an proof-posting party might be

“overcomitted” to produce conflicting proofs for different bonds.
- Useful in Channels where just a bad nLockTime can punish

- Different protocol architectures have different
trade-offs (one shot is easy to explain!)

- Hacking Data Availability for smaller proofs (e.g., if
input is a ZKP, proving that the redeem tx was inscribed
in a block we’ve seen already)

- 𝚪A-𝚪B-δ chains, where both parties can publish proof data
- Dynamic “circuit changes” for monotonic properties /

keyed data (see channels)

Questions

BACKUP FULL DIAGRAM & Protocol Rev 1

I realized I could make the protocol much simpler for the
presentation… But left this for posterity.

The split input version has uses, too, and some advantages.

But it’s more complicated.

ζ

θ δ𝚪
F
u
n
d

Alice

Bob

Alice

Alice

Missing: Q in X
Signed: Alice/Bob

PreSigned: Alice/Bob
δ

nSeq ψ
SIGHASH_NONE
Alice/Bob

ζ

Bob + 𝝋(Σ)= 0

Alice + N CSV

b
o
n
dAlice

Alice

Σψ

Alice

Bob

X ← Σ

𝝋(Σ)

𝝋(X)

nSeq 0
SIGHASH_NONE
Alice Only

ζ

Alice

Bob

⏎
bob

Bob + locktime

Σ0

Bob

Alice + N CSV

ζ
Alice + N CSV

b
o
n
dAlice

Alice

ζ
Bob + 𝝋(Σ)= 0

Alice + N CSV

b
o
n
dAlice

Alice

ζ

θ δ𝚪
F
u
n
d

Alice

Bob

Alice

Alice

Missing: Q in X
Signed: Alice/Bob

Bob + 𝝋(Σ)= 0

Alice + N CSV

b
o
n
dAlice

Alice

⏎
bob

Bob + locktime
Bob

Alice + N CSV

ζ

θ δ𝚪
F
u
n
d

Alice

Bob

Alice

Alice

Missing: Q in X
Signed: Alice/Bob

Bob + 𝝋(Σ)= 0

Alice + N CSV

b
o
n
dAlice

Alice

X ← Σ

𝝋(Σ)

𝝋(X)

⏎
bob

Bob + locktime
Bob

Alice + N CSV

ζ

θ δ𝚪
F
u
n
d

Alice

Bob

Alice

Alice

Missing: Q in X
Signed: Alice/Bob

Bob + 𝝋(Σ)= 0

Alice + N CSV

b
o
n
dAlice

Alice

X ← Σ

𝝋(Σ)

𝝋(X)

⏎
bob

Bob + locktime
Bob

Alice + N CSV

ζ

θ δ𝚪
F
u
n
d

Alice

Bob

Alice

Alice

Missing: Q in X
Signed: Alice/Bob

Bob + 𝝋(Σ)= 0

Alice + N CSV

b
o
n
dAlice

Alice

X ← Σ

𝝋(Σ)

𝝋(X)

⏎
bob

Bob + locktime
Bob

Alice + N CSV

ζ

θ δ𝚪
F
u
n
d

Alice

Bob

Alice

Alice

Missing: Q in X
Signed: Alice/Bob

Bob + 𝝋(Σ)= 0

Alice + N CSV

b
o
n
dAlice

Alice

X ← Σ

𝝋(Σ)

𝝋(X)

⏎
bob

Bob + locktime
Bob

Alice + N CSV

Careful Choice of 𝝋(X)

X:

Valid transactions redeeming the funds appropriately

ζ

θ δ𝚪
F
u
n
d

Alice

Bob

Alice

Alice

Missing: Q in X
Signed: Alice/Bob

PreSigned: Alice/Bob
δ

nSeq ψ
SIGHASH_NONE
Alice/Bob

ζ

Bob + 𝝋(Σ)= 0

Alice + N CSV

b
o
n
dAlice

Alice

Σψ

Alice

Bob

X ← Σ

𝝋(Σ)

𝝋(X)

⏎
bob

Bob + locktime
Bob

Alice + N CSV

ζ

θ δ𝚪
F
u
n
d

Alice

Bob

Alice

Alice

Missing: Q in X
Signed: Alice/Bob

PreSigned: Alice/Bob
δ

nSeq ψ
SIGHASH_NONE
Alice/Bob

ζ

Bob + 𝝋(Σ)= 0

Alice + N CSV

b
o
n
dAlice

Alice

Σψ

Alice

Bob

X ← Σ

𝝋(Σ)

𝝋(X)

nSeq 0
SIGHASH_NONE
Alice Only

ζ

Alice

Bob

⏎
bob

Bob + locktime

Σ0

Bob

Alice + N CSV

Timing Analysis
ignoring tx confirm windows

Alice’s
Bond

Funding
&

Circuit

hI+N

Refund
 Alice Bond

hI

=T

Bob
Punish
 Alice
Fund

Signing
Of Sigma

Txs

θ⇒

δCommi

t X

Bob
Punish
Alice
Bond

Spend

Σ

+ψ
C

+ Relative
= Absolute
C Concurrent
A Arbitrary

A3A2
A1

sum(A) + ψ < T

T < hI+N

Alice
Punish
Bob
Fund

+N

