
D
RA
FT

Delbrag

April 4, 2025

Jeremy Rubin
jeremy [at] char [dot] network

1 Disclaimer

This is published as a draft, sharing for the benefit of all in an unfinished state.

2 Introduction

Delbrag is a new improvement to BitVM style constructions that take advantage
of Yao’s Garbled Circuits to minimize the on-chain costs.

3 Construction of Encrypted NAND System with
Zero-Knowledge Proof

In this section we give a brief demonstration of how a garbled circuit is built.

3.1 1. Represent the Inputs

The inputs are given as:

b0 = [H(X0), H(Y0)], b1 = [H(X1), H(Y1)], b2 = [H(X2), H(Y2)]

where:

• X is a 0-bit value, and Y is a 1-bit value.

• H is a cryptographic hash function, e.g. SHA256.

The system must satisfy the following:

NAND(b0, b1) = b2

Additionally, Y2 must be encrypted under X0 and X1, allowing decryption when
X0 and X1 are revealed:

K = H(X0 ||X1)

ENC(K,Y2) = c

1

D
RA
FT

2. Encryption of Y2

To ensure that Y2 is decryptable only with X0 and X1, we define:

K = H(X0 ||X1)

as the derived encryption key. Using K, Y2 is encrypted:

c = Encrypt(K,Y2)

Decryption is only possible if both X0 and X1 are known, allowing the compu-
tation of K:

Y2 = Decrypt(c,K).

3. Zero-Knowledge Proof of Correctness

To prove in Zero-Knowledge that knowing X0 and X1 allows decryption of Y2,
we can use a myriad of proof techniques. Later, we will discuss a practical
construction.

Prover’s Commitment: The prover commits to the values X0, X1, and Y2
without revealing them:

C0 = Commit(X0), C1 = Commit(X1), C2 = Commit(Y2).

The prover computes the encryption:

c = ENC(H(X0 ||X1), Y2).

Proof: The prover demonstrates knowledge of X0 and X1 such that:

1. K = H(X0 ||X1),

2. Decrypt(c,K) = Y2,

3. Y2 satisfies NAND(b0, b1) = b2.

This is achieved by encoding the above logic in a zk-SNARK circuit, which
proves the following:

• K is derived correctly from X0 and X1,

• c decrypts to Y2 with K,

• Y2 satisfies the logical constraint NAND(b0, b1) = b2.

The proof reveals no information about X0, X1, or Y2, but convinces the
verifier that the prover knows X0 and X1, and that c and Y2 are correctly
formed.

2

D
RA
FT

3.2 Verification

The verifier checks:

1. The zk-SNARK proof for validity,

2. The consistency of the provided b0, b1, b2 with the proof and the NAND
computation,

Summary

This construction ensures that:

1. Y2 is only accessible if both X0 and X1 are known.

2. Proofs of correctness and knowledge are Zero-Knowledge.

3. The NAND operation NAND(b0, b1) = b2 is verifiable.

4 Generalization

Commitments Per Gate

For each gate, such as gates i = 0, j = 1, k = 2, the full set of commitments is
defined as:

Input 0 Input 1 Output Encryption
X0 X1 Y2 Hzk(X0||X1)

⊕
Y2

X0 Y1 Y2 Hzk(X0||Y1)
⊕
Y2

Y0 X1 Y2 Hzk(Y0||X1)
⊕
Y2

Y0 Y1 X2 Hzk(Y0||Y1)
⊕
X2

This set includes all possible combinations of inputs X0, X1, Y0, Y1 that map
to the output X2, Y2 for the respective gate.

The encryption is given as an example of a possible encryption function.
Computing H(a||b) requires knowledge of both a and b, and the xor operator
obscures the output. Hzk could be SHA256, or a ZK hash that is easy to prove
over such as Poseidon.

Commitments for a Full Circuit

For a complete circuit consisting of multiple gates, there will be many such sets
of commitments:

C =
⋃
i

Ci,

where i iterates over all gates in the circuit. Thus, the total commitments
encompass all input-output relationships across all gates.

3

D
RA
FT

Aggregated Zero-Knowledge Proof

Rather than constructing a separate Zero-Knowledge Proof (ZKP) for each in-
dividual bit or gate, the ZKP can be aggregated across all gates and their
respective commitments. This aggregated ZKP proves, in a single proof, that:

1. The prover knows the inputs for each gate.

2. The commitments and logical operations (e.g., NAND) for all gates in the
circuit are valid.

3. The outputs of intermediate gates align with the inputs of subsequent
gates.

This approach reduces the computational overhead of verifying many sepa-
rate proofs and provides a compact, global proof for the correctness of the entire
circuit.

Handling Equivocation on Interior Wires

If an interior wire e is equivocated over (e.g., its value is shared out of band),
the verifier learns both Xe and Ye. While this guarantees that the verifier can
determine the correct result of the circuit, it introduces additional considera-
tions:

1. Impact on the Verifier The verifier learning an additional wire’s value
is not inherently problematic, as they still obtain the correct circuit result.

2. Impact on the Prover This situation is problematic for the prover, as the
verifier may use the extra information to construct a failure gate or otherwise
compromise the prover’s intent.

3. Mitigating Equivocation with Circuit Extensions To explicitly cause
a failure in case of equivocation, an extension to the circuit can be implemented
as follows:

1. Encrypting an Equivocation Value: Under each wire pair (Xi, Yi),
encrypt a single shared value Xequiv that is tied to the pair.

2. Zero-Knowledge Proof Integration: Incorporate into the Zero-Knowledge
Proof a condition such that:

• If any pair (Xi, Yi) is revealed, Xequiv is also revealed.

• The circuit is extended with a fail gate mechanism (see Section 5.0.2)
to trigger a failure upon the revelation of Xequiv.

This mechanism ensures that any equivocation by the prover or unauthorized
disclosure of wire values results in a clear and enforceable failure condition.

4

D
RA
FT

5 Integration into a Bitcoin Script

To integrate into Bitcoin, we introduce a 2 party prover-verifier model.
First, the prover and verifier generate a circuit and proof of NAND gate

construction. The prover knows all of the underlying bit commitments. The
prover has a key P and the verifier has a key V.

We then filter the circuit to gates that are either input or output. I.e., the
inputs are wires that are not an output to any gate, the outputs are wires that
are not an input to any gate input = {i| ̸ ∃C.,.,i}, output = {i| ̸ ∃Ci,.,.∨ ̸ ∃C.,i,.}1.

We will be accumulating the following script conditions into a taproot output
ζ.

For each gate bk = NAND(bi, bj), we generate a set of 4 fraud proof gates
for correctness of computation.

Each leaf will have the following form:

Incorrect(A,B,C) = AND(Signed(V), {Reveal(SHA256(Xi))|w ∈ A,B,C})

And is templated in via the table below:

bi bj bk ¬bk leaf
Xi Xj Yk Xk Incorrect(Xi, Xj , Xk)
Yi Xj Yk Xk Incorrect(Yi, Xj , Xk)
Xi Yj Yk Xk Incorrect(Xi, Yj , Xk)
Yi Yj Xk Yk Incorrect(Yi, Yj , Yk)

Thus, if there is any incorrect computation or revelation of an incorrect wire,
ever, then the Verifier can sweep the funds.

Note: we do not need to create an exclusivity fraud proof tap-leaf, as we
have already created Xequiv. However, if desired, a Tapleaf for each bit i could
be included instead:

And(Reveal(SHA256(Xi)), Reveal(SHA256(Yi)), Signed(V))

Thus, if the verifier ever reveals multiple preimages for a given bit, the verifier
may take all the funds.

5.0.1 Timeout

Should there be no bits revealed by deadline τ , then the Verifier can sweep the
funds, or funds can be returned via a presigned return transaction for ζ.

Presigned:
And(After(τ), Signed(P), Signed(V))

Sweep:
And(After(τ), Signed(V))

1Strictly speaking, a circuit might be set up such that there are interior wires desired to
be also read as outputs. A practical implementation would likely use metadata to designate
such outputs.

5

D
RA
FT

5.0.2 Failure Gates

Certain hash commitments can serve as indicators of invalid inputs. For in-
stance, consider a circuit where bp is set as follows:

bp =

{
1 if the input is prime,

0 if the input is not prime.

If the input is required to be prime, a Tapleaf can be added to enforce conditions
such that the commitment Sha256(Xp), indicating the input was not prime,
must be revealed to allow spending.

This can be expressed as:

And(Signed(V),Reveal(Sha256(Xp))),

This construct ensures that the Tapleaf is spendable only if the verifier re-
veals evidence of an invalid (non-prime) input.

It is possibly more efficient in TapTree lookup cost to sum all of the possible
failure conditions into a single bit, so as to reduce the number of Tapleafs.

However, if a failure Tapleaf instead includes a condition such as:

And(Signed(P),Signed(V),Reveal(Sha256(Xp))),

This setup allows for the generation of a pre-signed transaction associated
with a specific case, such as when the commitment Xp reveals that the input
is not prime. The pre-signed transaction ensures that spending can only occur
under the following conditions:

1. The prover has explicitly signed for the transaction (P).

2. The verifier has also signed for the transaction (V).

3. The hash commitment Sha256(Xp) is revealed, confirming the invalid
(non-prime) nature of the input.

This construct tightly binds the transaction to the specific invalidity case,
such as revealing a non-prime number, while ensuring dual authorization from
both the prover and verifier.

5.1 Trace Delegate Input

Prover and Verifier agree that a separate input, δ, will be used to spend with
the script built thus far. The input δ is a delegate input, similar to the concept
of a connector.

Prover and verifier pre-sign a transaction (using a script clause as below).

And(Signed(P), Signed(V))

Prover signs this branch with sighash none, but committing to δ and an
nSequence with a timeout of ψ blocks 2. The nSequence ensures that after δ’s
publication there is sufficient time for the proof of fraud to be used.

2BIP-341: The signature message commits to all input nSequence if SIGHASH NONE or
SIGHASH SINGLE are set (unless SIGHASH ANYONECANPAY is set as well).

6

D
RA
FT

5.2 δ Spend Conditions

The protocol’s most expensive step space wise is the input step.
This step occurs in a separate input, γ, which needs only to contain a dust-

amount of Bitcoin.
First, all the input wires must be filtered for, i.e., I = {i| ̸ ∃C.,.,i}
A trace of the input data must be committed to along with a spend by the

verifier:

And(And(∀i ∈ I : Or(Reveal(SHA256(Xi), SHA256(Yi)))), Signed(P)

.
The prover signs a transaction θ from output γ which creates δ. However,

the prover leaves θ unfinalized, without witnesses for the input data until the it
decides on the input.

The output δ is constructed first.
The script for δ should be
And(Or(After(ϵ), Signed(V)), Signed(P))
Where ϵ is a timeout, which enables the prover to use the output if the

verifier is withholding.

6 Program Construction

While arbitrary programs may be used, with arbitrary input and output values,
To maximize the usefulness of this protocol, the input to the circuit should

contain two transactions:

• transaction which spends δ and ζ, using a signature from the verifier and
prover with the nSequence on δ set to ψ.

• a partial transaction identical to the above, which is signed by the prover
and not the verifier, with nSequence on δ set to 0.

These can be compressed to the diffs (just an additional signature with a
different nSequence).

With these inputs, the spend of γ reveals the transactions that can be used
with ζ.

If any output bit is incorrect, then the Verifier has at least ψ blocks before
the Prover can use δ to complete the transaction, or to challenge the execution.
If ψ blocks elapses, then the Prover can use the transaction themselves, or any
transaction they prefer (TODO: not sufficiently bound, but still secure).

If the transactions are not valid according to the circuit, then a failure gate
and outcome shall be triggered enabling the verifier to inflict punishment.

7

D
RA
FT

7 Optimal Garbling

BitGC: Garbled Circuits with 1 Bit per Gate has shown much more efficient
garbling where marginal gates cost only 1-bit per gate. These constructions
could make Delrag practical for implementation, but further study is needed.3

3Embarrassing confession: The author of this paper stopped working on it to understand
this publication, but didn’t find the time to review, so decided to publish this work in draft
form.

8

https://eprint.iacr.org/2024/1988

	Disclaimer
	Introduction
	Construction of Encrypted NAND System with Zero-Knowledge Proof
	1. Represent the Inputs
	Verification

	Generalization
	Integration into a Bitcoin Script
	Timeout
	Failure Gates

	Trace Delegate Input
	 Spend Conditions

	Program Construction
	Optimal Garbling

