
STRUCTURING	MULTI	TRANSACTION	
CONTRACTS	IN	BITCOIN	

Jeremy	Rubin	

Is	Cash	Bitcoin’s		
Killer	App?	

•  Ethereum	does	smart	contracts!	
– like	the	DAO	

	
	
*Betteridge’s	Law	

Safe	Contract	Extensions	
for	Bitcoin	Contracts	

•  Tools	for	complex	contracts	
•  Avoid	internal	complexity	
	

We	Can	Have	It	All	

•  Transaction	level	invariants	
called	Covenants	can	get	us	there	

Contributions	

•  Extensions	to	Covenants	
•  Merkle	Compressed	Covenants	
•  Transaction	Diagrams	
•  Multi-Phase	Execution	Techniques	

BACKGROUND	KNOWLEDGE	
Covenant	Contracts	

The	Naughty	Banker	

•  You	ask	Bob’s	Bank	to	hold	a	$100	
deposit	
– Bob	buys	himself	some	new	sneakers	
with	your	money	

Covenant	Contracts	

•  Contracts	that	REQUIRE	creation	of	
a	contract	of	certain	form	

•  Example:	Hiring	a	Banker	
– They	have	your	money	but	only	you	can	
withdraw!	

Placeholder	Notation	

•  high	level:		
– COV(plain	English	invariant)	

•  script:		
– <plain	English	invariant>	OP_COV	

•  Examples:	
– COV(Bob’s	Bank	only	lets	me	withdraw)	
– <Bob’s	Bank	only	lets	me	withdraw>	
OP_COV	

Making	Covenants	

•  Two	Major	Variant	
– Invariant	by	Execution	

•  OP_COV[MES16]	“Introspective”	
–  Pattern	matching	

•  “Computational”	L	impractical	
– Invariant	by	Construction	

•  Recovered	PubKey	“Cryptographic”	
–  OP_CHECKSIGFROMSTACK	+	OP_CAT/SUBSTR	
–  SIGHASH_MASK-ing	

•  MultiSig	“Trustful”	
–  1	of	N	honesty	

L	Grave	Concerns	L		
•  Fungibility	&	Privacy	
–  Forced	Compliance	

•  Computational	Explosion	
–  Loops	could	make	Turing	Complete	

•  Open	Topic:	Expressive	&	Safe	contracts	
without	covenants?	
–  Like	preventing	Turing	Completeness…		

•  {CSS,	MOV,	C++	Templates…}	are	Turing	Complete		
–  Trivial	Bitcoin	“covenants”	

•  sum(Outputs)	<=	sum(Inputs),	inputs	exist,	etc…	

COVENANTS	
extensions	to		

Tale	of	Expired	Accounts	

•  Let’s	say	you	have	a	phone	number	
as	2FA	to	your	bank	account	
– When	you	change	your	number,	you	want	
the	2FA	to	change	too	

– In	fact,	you	want	to	not	be	able	to	
change	your	phone	before	your	2FA	
points	to	the	new	record	

Input-Join	Covenant	

•  Two	outputs	forced	to	be	consumed	
in	one	transaction	

•  Execution	or	Construction	based	
implementations	

ü Minimal	Bitcoin	Extensions	needed	
	

Two	Cars	Problem	

•  You	need	One	car	at	noon	
– You	have	a	Ferrari	and	a	Porsche		
– You	want	your	(really	good)	friend	to	
borrow	one	car	at	noon	but	not	the	
one	that	you	want	

– “Only	after	I	have	chosen	should	you	
be	able	to	drive	away”	

Impossible	Input	Covenant	

•  Prove	an	input	creation	impossible	
1.  Prove	an	input	was	already	consumed	
2.  Construct	input	from	consumed	input	
3.  1	&	2	Prove	input	creation	impossible	

•  “Constructive”	without	extension,	
“Introspective”	with	new	OpCodes	
–  Consuming	output	exclusively	made	in	a	
branch	equivalent	to	chain	introspection	

–  Must	be	constructed	ahead	of	time	

Bad	Airlines	

•  You’re	flying	from	JFK	to	SFO	with	
a	layover	in	ORD	
– You	go	JFK	à	ORD	
– ORD	gets	snowed	in	
– You’re	stuck	in	the	snow	

•  How	can	we	ensure	JFKàSFO	next	
time?	

Intermediate	Output	Covenant	

•  <i>	OP_IS_IUTXO	requires	output	at	
index	<i>	be	spent	in	same	block	

•  Bad	for	two-phase-commit	protocols	
– Except	between	commits	

•  Complicates	block-creation	code	
– Child-Pays-For-Parent	similar	

Bad	Airlines	(Part	2)	

•  You	book	your	own	transfers,	
avoiding	ORD	and	other	cold	
airports	
– When	you	get	to	the	airport	you	
realize	the	first	check-in	won’t	give	
you	all	your	tickets,	you	need	to	go	
through	security	twice	

Virtual	Output	Covenant	
•  <s>	<i>	OP_SIG_VUTXO	requires	that	output	at	<i>	

redeemable	with	<s>	
•  <i>	OP_IS_VUTXO	requires	some	other	input	script	

provide	proof	
–  allows	optimizing	malleating	provers…	

•  Same	goal	as	OP_IS_IUTXO		
–  No	multiple	transactions	
–  No	mining	complexity	
–  Additional	Signing	complexity	

•  Could	permit	shared-stack	
–  Through	alt-stack?	

•  Safe	“Turing	Complete”	recursion?	
–  𝚫0,	Russell's	Post	Theorem	Trace	Witness	
–  You	can	tweet	me	too…		
		“Imma	let	you	finish	but	VUTXO	is	the	best	𝚫0	–		
			@JeremyRubin”	

MERKLE	COVENANTS	
application	

Compressed	Contracts	

•  Summarize	useless	clause	in	
contract	

•  Example:	Appendix	A	
– Provide	your	Tax	Payer	ID	here	____	
– See	Appendix	A	if	no	Tax	Payer	ID	

MAST:	Merkelized		
Abstract	Syntax	Tree	

•  O(log(n))	branch	elimination	
compression	

•  Huffman	Codable	
•  Example:	
Compile	
	if	(A)	{T}	else	{F}	 		

to	
	assert(H(code)==(A	?	H(T)	:	H(F)));		
	eval(code);	

	

	

Bitcoin	Implementation	
(Proposal)	

•  Put	all	branches	into	a	tree	&	run	
•  Example	
– if	(A){if	(B){C}	else	{D}}	else	{E}	
– Merkle	Tree	of	{`assert(A&&B);C`,	
`assert(A&&~B);D`,	`assert(~A);E`}	

– Prove	branch	in	the	tree,	then	run	
•  One	Input	inside	one	Transaction	

	

Properties	

•  Atomic	Execution	
– No	intermediate	state	

•  Minimal	Hash	“Overhead”	
– 1	Hash/Pruned	Branch,	1	Parent	Hash	

•  No	need	to	reveal	not-taken	branch	

Conditional	Covenant	

•  Make	an	Output	as	follows	
– scriptpubkey:	
OP_IF		
				<output	0	=	A	w/	1	satoshi>	OP_COV		
OP_ELSE		
				<output	0	=	B	w/	1	satoshi>	OP_COV	
OP_ENDIF	

I	
N	

O	
U	
T	

scriptsig:	OP_TRUE	
scriptpubkey:	OP_IF	
<output	0	=	A	w/	1	satoshi>	
OP_COV	OP_ELSE	<output	0	
=	B	w/	1	satoshi>	OP_COV	
OP_ENDIF	

A	

I	
N	

O	
U	
T	

scriptsig:	OP_FALSE	
scriptpubkey:	OP_IF	
<output	0	=	A	w/	1	satoshi>	
OP_COV	OP_ELSE	<output	0	
=	B	w/	1	satoshi>	OP_COV	
OP_ENDIF	

B	

Either	Red	Tx	or	Blue	Tx	
Transac5on	1	(if	Branch	1)	

Transac5on	1	(if	Branch	2)	

I	
N	

O	
U	
T	

In	

scriptsig:	OP_TRUE	
scriptpubkey:	OP_IF	
<output	0	=	A	w/	1	satoshi>	
OP_COV	OP_ELSE	<output	0	
=	B	w/	1	satoshi>	OP_COV	
OP_ENDIF	

scriptsig:	OP_FALSE	
scriptpubkey	(==	A):	
OP_IF	<output	0	=	C	w/	1	
satoshi>	OP_COV	OP_ELSE	
<output	0	=	D	w/	1	satoshi>	
OP_COV	OP_ENDIF	
	
	

D	

Red	Tx;	Either	C	or	D?	

O	
U	
T	

Transac5on	1	(if	Branch	1)	

Transac5on	2	(if	Branch	2)	

Properties	
•  Non-Atomic	Execution	Mode	
–  Intermediate	states	allowed	
–  Extra	hash	per	branch	

•  Atomic	Execution	Mode		
–  Using	OP_IS_VUTXO	
–  Minimal	Hash	“Overhead”	

•  1	Hash/Pruned	Branch,	1	Parent	Hash	
•  No	need	to	reveal	not-taken	branch	
•  Signature	Parallelization	benefits	
•  Larger	Max	Script	Size	

TRANSACTION	DIAGRAMS	

Primitives:	
Transaction	

A	

B	

input:	A	
script:	“…”	
scriptSig:	“…”	
output:	B	

A	

Primitives:	
Output	Covenant	

COV(B)	

B	

input:	A	
script:	COV(B)	
scriptSig:		“…”	
output:	B	

A	COV(B)	 COV(C)	

Primitives:	
Conditional	Covenant	

B	 C	

	
input:	A	
script:	
OP_IF	
				<output	0	=	B>	OP_COV	
OP_ELSE	
				<output	0	=	C>	OP_COV	
OP_ENDIF	
scriptSig:	OP_TRUE	
output:	B	

Primitives:	
AND	Covenants	

F	COV(H)	COV(G)	

G	 H	

	
input:	F	
script:	
<output	0	=	G	>	OP_COV	
<output	1	=	H>	OP_COV	
OP_ENDIF	
scriptSig:	
outputs:	G,	H	

Primitives:	
Input	Join	Covenant	

A	 INP(B)	

C	

B	 INP(A)	

A	 B	

C	

	
inputs:	A,	B	
script:	“…”	
scriptSig:	“…”	
outputs:	C	

Primitives:	
Impossible	Input	Covenant	

(Constructive)	

X	COV(A)	 COV(B)	

A	 B	

C	 INP(~B)	

D	

~A	~B	

	
inputs:	C,	~B	
script:	“…”	
scriptSig:	“…”	
outputs:	D	

	
inputs:	X	
script:	OP_IF	
<~B,	A>	OP_ELSE	
<B,	~A>	OP_ENDI	
F	OP_COV		
scriptSig:	“…”	
outputs:	~B,	A	

Primitives:	
Impossible	Input	Covenant	

	

X	COV(A)	 COV(B)	

A	 B	

C	 INP(~B)	

D	

~A	~B	

	
inputs:	C,	~B	
script:	“…”	
scriptSig:	“…”	
outputs:	D	

	
inputs:	X	
script:	OP_IF	
<~B,	A>	OP_ELSE	
<B,	~A>	OP_ENDI	
F	OP_COV		
scriptSig:	“…”	
outputs:	~B,	A	

Primitives:	
Impossible	Input	Covenant	

	

X	COV(A)	 COV(B)	

A	 B	

C	 INP(~B)	

D	

~A	~B	

	
inputs:	C,	~B	
script:	“…”	
scriptSig:	“…”	
outputs:	D	

	
inputs:	X	
script:	OP_IF	
<~B,	A>	OP_ELSE	
<B,	~A>	OP_ENDI	
F	OP_COV		
scriptSig:	“…”	
outputs:	~B,	A	

Primitives:	
Virtual	Output	

A	 B	

C	

input:	A	
script:	<index(B)>	OP_IS_IUTXO	
scriptSig:		“…”	
output:	B,	C	

A	 B	

C	

0	Satoshi	

COV(A)	 COV(B)	

A	COV(C)	 COV(D)	 B	COV(E)	 COV(F)	

C	 E	D	 F	

MAST	
	

COV(A)	 COV(B)	

A	COV(C)	 COV(D)	 B	COV(E)	 COV(F)	

C	 E	D	 F	

MAST	
Execution	

COV(A)	 COV(B)	

A	COV(C)	 COV(D)	 B	COV(E)	 COV(F)	

C	 E	 F	

MAST	
	

D	COV(H)	COV(G)	

G	 H	

COV(C)	 COV(F)	

C	 E	 F	

Shorthand	

D	COV(H)	COV(G)	

G	 H	

COV(E)	COV(D)	

COV(C)	 COV(F)	

C	 E	 F	

Shorthand	

G	 H	

COV(E)	COV(G,H)	

COV(C)	 COV(F)	

C	 E	 F	

Shorthand	

G	 H	

COV(E)	COV(G,H)	

COV(C)	 COV(F)	

C	 E	 F	

Shorthand	with	Depth	

G	 H	

COV(E)	COV(G,H)	
2	 3	 2	 2	

MULTI-PHASE	EXECUTION	
techniques	for	

Stuck	State	

•  A	multi-transaction	contract	which	
is	stuck	at	a	certain	branch,	when	
other	branches	could	have	avoided	
the	stuck	state	

•  Transactions	CANNOT	be	rolled	back	

Stuck	State	

B	OP_FALSE	OP_VERIFY	

COV(A)	 COV(B)	

A	COV(C)	 COV(D)	
SELECT	

C	 D	OP_FALSE	OP_VERIFY	

SELECT	

Simply	Non-Stuck	

•  Avoid	contracts	that	may	get	stuck	
– Only	use	virtual/intermediate	outputs	

	
•  Two-phase	commits	must	be	able	to	
get	stuck	

Taken-Branch-Elimination	
Rollback	

•  [If	after	acceptable	delay,]	
recreate	all	of	a	transaction’s	
input	scripts	without	branch	taken	

•  Finite	(no	looping)	
•  No	New	Opcode	
•  Drawback:	Program	Size	

COV(A)	 COV(B)	

Taken-Branch-Elimination	
Rollback	

A	

COV(C)	 TIMEOUT;RE	

C	

COV(A)	

A	

Safe	High	Voltage	Switching	

•  Ask	an	Electrical	Engineer	how	
they	keep	high	voltage	circuits	
with	low	voltage	control	separate	
– Optical	Isolation!	

Optical	Isolated	Contracts	

•  Use	separate	control	flow	for	
access	control	and	value	

•  Impossible	input	covenants	ensure	
fund	usage	with	protocol	

Optical	Isolated	Contracts	

A	

M0	
1000	Satoshi	(Fees	only)	

COV(INP(~F))	 COV(F)	

E	

G	

F	

B	

~F	

COV(A)	 COV(B)	

COV(F)	

INP(~F)	

M1	 100	Bitcoin	

Optical	Isolated	Contracts	

A	

M0	
1000	Satoshi	(Fees	only)	

COV(INP(~F))	 COV(F)	

E	

G	

F	

B	

~F	

COV(A)	 COV(B)	

COV(F)	

INP(~F)	

M1	 100	Bitcoin	

Optical	Isolated	Contracts	

A	

M0	
1000	Satoshi	(Fees	only)	

COV(INP(~F))	 COV(F)	

E	

G	

F	

B	

~F	

COV(A)	 COV(B)	

COV(F)	

INP(~F)	

M1	 100	Bitcoin	

Optical	Isolated	Contracts	

A	

M0	
1000	Satoshi	(Fees	only)	

COV(INP(~F))	 COV(F)	

E	

G	

F	

B	

~F	

COV(A)	 COV(B)	

COV(F)	

INP(~F)	

M1	 100	Bitcoin	

The	Deli	Problem	

•  You	want	to	buy	some	deli-meats	
and	prepared	foods	
– But	the	line	is	blocking	the	counter	
– Deli-number	congestion	control?	

Congestion	Control	

•  Suppose	you	have	a	time	sensitive	
close	operation	

•  Do	a	cheap	“commit-close”	txn	
•  More	expensive	close	when	excess	
bandwidth	available	
–  size(COV	CLOSE)	<	size(CLOSE)	

•  Send	both	to	miner,	they	can	choose!	
•  Overall,	more	expensive,	but	faster	

Congestion	Control	

close	Bob	

RSMC	 Alice	

close	Alice	

RSMC	 Bob	

⚡		

Congestion	Control	

close	Bob	

RSMC	 Alice	

close	Alice	

RSMC	 Bob	

⚡		

COV(Close	Bob)	 COV(Close	Alice)	

Congestion	Control	

close	Bob	

RSMC	 Alice	

close	Alice	

RSMC	 Bob	

⚡		

COV(Close	Bob)	 COV(Close	Alice)	

Etc	

•  Inductive	Execution	
– Start	from	the	last	transaction	up	

•  Single	Induction	Execution	
– run	forward,	except	for	first	step	
run	as	above	

•  Rate	Limited	Rollback	
•  Traditional	M-of-N	timeouts	

Quality	of	Service	Matters	

•  We	can’t	just	make	protocols	more	
resource-efficient,	we	need	to	
make	them	work	better	when	
resources	are	constrained	

“Secure	Contracts	
Isolate	Value”	

•  Give	your	friend	the	keys	to	your	
car	
– but	not	the	garage	door	opener	
– because	you	can	open	the	garage	door	
from	your	phone	

•  That	Bitcoin	transaction	propagate	
value	makes	incentives	harder	

Covenants	Are	Not	Evil	

•  There	are	strong	reasons	to	fear	
general-purpose	covenants,	but	
they	still	are	worth	consideration	

•  VUTXO-only	COV	is	low	risk	

Bitcoin	Must	Pick	Battles	

•  Tension	between	security	and	
complexity	

•  Keep	scripts	simple	predicates!	
•  Better	higher-order	inter-output	
interaction	may	be	safer	

