STRUCTURING MULTI TRANSACTION
CONTRACTS IN BITCOIN

Is Cash Bitcoin’s
Killer App?

e Ethereum does smart contracts!
— 1like the DAO

Betteridge’s Law

Safe Contract Extensions
for Bitcoin Contracts

* Tools for complex contracts
* Avoid internal complexity

We Can Have It All

* Transaction level invariants
called Covenants can get us there

Contributions

Extensions to Covenants

Merkle Compressed Covenants
Transaction Diagrams

Multi-Phase Execution Techniques

BACKGROUND KNOWLEDGE

The Naughty Banker

* You ask Bob’s Bank to hold a $100
deposit
— Bob buys himself some new sneakers
with your money

Covenant Contracts

e Contracts that REQUIRE creation of
a contract of certain form

* Example: Hiring a Banker

— They have your money but only you can
withdraw!

Placeholder Notation

* high level:

— COV(plain English invariant)
* script:

—<plain English invariant> OP_COV
* Examples:

— COV(Bob’s Bank only lets me withdraw)

—<Bob’s Bank only lets me withdraw>
OP_CoV

Making Covenants

* Two Major Variant

— Invariant by Execution
* OP_COV[MES16] “Introspective”

— Pattern matching

— Invariant by Construction

* Recovered PubKey “Cryptographic”
— OP_CHECKSIGFROMSTACK + OP_CAT/SUBSTR
— SIGHASH_MASK-ing

e MultiSig “Trustful”
— 1 of N honesty

® Grave Concerns ®

* Fungibility & Privacy

— Forced Compliance
 Computational Explosion

— Loops could make Turing Complete

* Open Topic: Expressive & Safe contracts
without covenants?

— Like preventing Turing Completeness..
« {CSS, MOV, C++ Templates..} are Turing Complete

— Trivial Bitcoin “covenants”
 sum(Outputs) <= sum(Inputs), inputs exist, etc..

COVENANTS

Tale of Expired Accounts

* Let’s say you have a phone number
as 2FA to your bank account

—When you change your number, you want
the 2FA to change too

—In fact, you want to not be able to

change your phone before your 2FA
points to the new record

Input-Join Covenant

* Two outputs forced to be consumed
in one transaction

e Execution or Construction based
implementations

v'Minimal Bitcoin Extensions needed

Two Cars Problem

* You need One car at noon
—You have a Ferrari and a Porsche

—You want your (really good) friend to
borrow one car at noon but not the
one that you want

—“Only after I have chosen should you
be able to drive away”

Impossible Input Covenant

* Prove an 1input creation impossible
1. Prove an input was already consumed
2. Construct input from consumed input
3. 1 & 2 Prove input creation impossible

e “Constructive” without extension,
“Introspective” with new OpCodes

— Consuming output exclusively made in a
branch equivalent to chain introspection

— Must be constructed ahead of time

Bad Airlines

* You’re flying from JFK to SFO with
a layover 1in ORD

—You go JFK -> ORD
—ORD gets snowed 1in
—You’re stuck in the snow

* How can we ensure JFK->SFO next
time?

Intermediate Output Covenant

e <1> OP_IS TUTXO requires output at
index <1> be spent 1n same block

* Bad for two-phase-commit protocols
— Except between commits

* Complicates block-creation code
— Child-Pays-For-Parent similar

Bad Airlines (Part 2)

* You book your own transfers,
avoiding ORD and other cold
airports
—When you get to the airport you

realize the first check-in won’t give

you all your tickets, you need to go
through security twice

Virtual Output Covenant

<S> <i> OP_SIG VUTXO requires that output at <i>
redeemable with <s>

<i> OP_IS VUTXO requires some other input script
provide proof
— allows optimizing malleating provers..

Same goal as OP_IS IUTXO

— No multiple transactions

— No mining complexity

— Additional Signing complexity

Could permit shared-stack

— Through alt-stack?

Safe “Turing Complete” recursion?

— A, Russell's Post Theorem Trace Witness

— You can tweet me too..
“Imma let you finish but VUTXO is the best A, -
@JeremyRubin®

MERKLE COVENANTS

Compressed Contracts

e Summarize useless clause 1n

contract
* Example: Appendix A
— Provide your Tax Payer ID here

— See Appendix A if no Tax Payer ID

MAST: Merkelized

Abstract Syntax Tree
* 0(log(n)) branch elimination
compression
 Huffman Codable
* Example:
Compile
if (A) {T} else {F}
to
assert(H(code)==(A ? H(T) : H(F))):
eval(code);

Bitcoin Implementation
(Proposal)

e Put all branches into a tree & run

* Example
—if (A){if (B){C} else {D}} else {E}

— Merkle Tree of { assert(A&&B);C ,
"assert(A&&~B);D, "assert(~A);E }
— Prove branch in the tree, then run

* One Input inside one Transaction

Properties

e Atomic Execution
—No intermediate state

* Minimal Hash “Overhead”
—1 Hash/Pruned Branch, 1 Parent Hash

* NOo need to reveal not-taken branch

Conditional Covenant

* Make an Output as follows

— scriptpubkey:
OP_IF

<output @ = A w/ 1 satoshi> OP_COV
OP ELSE

<output @ = B w/ 1 satoshi> OP_COV

OP_ENDIF

Either Red Tx or Blue Tx

Transaction 1 (if Branch 1)

scriptsig: OP_TRUE
scriptpubkey: OP_IF
<output 0 = A w/ 1 satoshi>
OP_COV OP_ELSE <outputO
=B w/ 1 satoshi> OP_COV
OP_ENDIF

Transaction 1 (if Branch 2)

cC O

scriptsig: OP_FALSE
scriptpubkey: OP_IF
<output 0 = A w/ 1 satoshi>
OP_COV OP_ELSE <outputO
=B w/ 1 satoshi> OP_COV
OP_ENDIF

Red Tx;

E1ther C or D?

prFessss-ss-ss-sEsTsrTesEeseseseeseses e EeasEsETEESEEa T - e E - . I
I Transaction 1 (if Branch 1) pmmm—mmEmEmEmem- -e—-
- . . \

I / scriptsig: OP_FALSE !
I |scriptsig: OP_TRUE I scriptpubkey (== A): |
I | scriptpubkey: OP_IF | o |OP_TF <output0=Cw/1 !
I = ' \ '
I <output 0 = A w/ 1 satoshi> I ‘ ¥ satoshi> OP_COV OP_E L.SE n

OP_COV OP_ELSE <outputO | N T <output 0 = D w/ 1 satoshi> I I
I' | =B w/ 1satoshi> OP_COV 1 OP_COV OP_ENDIF |
I |oP_ENDIF | |
l / I
] / ! I
I ,,_——________,/ In II
e o4 -

4 /
/ Ky
0 //
D U [e p
T Transaction 2 (if Branch 2) ,
s
\ o’
~ ~ - w

Properties

Non-Atomic Execution Mode
— Intermediate states allowed
— Extra hash per branch

Atomic Execution Mode
— Using OP_IS VUTXO
— Minimal Hash “Overhead”
e 1 Hash/Pruned Branch, 1 Parent Hash

No need to reveal not-taken branch
Signature Parallelization benefits
Larger Max Script Size

TRANSACTION DIAGRAMS

Primitives:
Transaction

input: A

script: “...”
scriptSig: “...” H

output: B

Primitives:
Output Covenant

A COV(B)

input: A
script: COV(B)

scriptSig: “...” H

output: B

Primitives:
Conditional Covenant

COV(B) Cov(C)

A

B

input: A
script:
OP_TIF

<output 0 =B> OP_COV
OP_ELSE

<output 0=C> OP_COV
OP_ENDIF
scriptSig: OP_TRUE
output: B

Primitives:
AND Covenants

o COV(G) COV(H)
input: F

4y ;l;l ;l;l
script:

<output0=G > OP_COV
<output 1=H> OP_COV
OP_ENDIF

scriptSig:
outputs: G, H

Primitives:
Input Join Covenant

-——
- ~o

inputs: A, B
script: “.”
scriptSig: “.”
outputs: C

Primitives:
Impossible Input Covenant
(Constructive)

- ~
-

X COV(B)

inputs: X

script: OP_IF
inputs: C, ~B <~B, A> OP_ELSE
script: “.” <B, ~A> OP_ENDI
scriptSig: “..” F 0?_C0Y
outputs: D scriptSig: “..”

outputs: VB, A

Primitives:
Impossible Input Covenant

-
-

! CoV(B
‘ C INP(~B)| \ X (B)

B

inputs: X

script: OP_IF
inputs: C, ~B <~B, A> OP_ELSE
script: “.” <B, ~A> OP_ENDI
scriptSig: “..” F 0?_C0Y
outputs: D scriptSig: “..”

outputs: VB, A

Primitives:
Impossible Input Covenant

X COV(B)

B

inputs: X

script: OP_IF
inputs: C, ~B <~B, A> OP_ELSE
script: “.” <B, ~A> OP_ENDI
scriptSig: “..” F 0?_C0Y
outputs: D scriptSig: “..”

outputs: VB, A

Primitives:
Virtual Output

E 0 Satoshi E >|'-Bj!

input: A

script: <index(B)> OP_IS_IUTXO
scriptSig: “...”

output: B, C

MAST

%

cov(C) A cov(D) &é S COV(E) B COV(F)
9
C F

MAST
Execution

s%c} COV(E) B COV(F)

MAST

s%c} COV(E) B COV(F)

Cov(C) A

< COV(G) COV(H)
208D N\

Shorthand

COV(C) COoV(D) COV(E) COV(F)

(::;é COV(G) D COV(H)\ é

Kl

Shorthand

A

N\ COV(C)COV(G,H)COV(E) COV(F) e

Shorthand

CoV(C)COV(G,H)COV(E)COV(F)

Shorthand with Depth

CoV(C)COV(G,H)COV(E)COV(F)

MULTI-PHASE EXECUTION

Stuck State

e A multi-transaction contract which
1s stuck at a certain branch, when
other branches could have avoided

the stuck state
* Transactions CANNOT be rolled back

Stuck State

cov(C) cov(D) m
A 5 =B op_FALSE oP_VERIFY

'>|§ D op_FaLSE oP_VERIFY ‘

Simply Non-Stuck

* Avoid contracts that may get stuck
—Only use virtual/intermediate outputs

* Two-phase commits must be able to
get stuck

Taken-Branch-Elimination
Rollback

[If after acceptable delay,]
recreate all of a transaction’s
input scripts without branch taken

Finite (no looping)
No New Opcode
Drawback: Program Size

Taken-Branch-Elimination

Rollback

feqy COV(A) COV(B)

COV(A)

Qﬁqx Cov(C) TIMEOUT;RE
»

Safe High Voltage Switching

* Ask an Electrical Engineer how
they keep high voltage circuits
with low voltage control separate

—Optical Isolation!

Optical Isolated Contracts

* Use separate control flow for
access control and value

* Impossible input covenants ensure
fund usage with protocol

Optical Isolated Contracts

‘ I 1000 Satoshi (Fees only) Xy COV(A CoV(B
—~ \’%&I() (B)

106 Bitcoin OV (F) n
\s\ ~
EOV(INP(~F)) I_“'_F_l('

PX A 1N

Optical Isolated Contracts

1000 Satoshi (Fees only) Xy COV(A CoV(B
‘ MG I &Tw (8)

100 Bitcoin COV(F)
A 5
VTP) CO+<F_>/ [
¢ ~

Optical Isolated Contracts

1000 Satoshi (Fees only) Xy COV(A COV(B
‘ MO I &IM (B)

100 Bitcoin COV(F) n
\s\ ~
<¢<<¢g}0V(INP(F)) ‘ ~F Ié

PX A 1N

Optical Isolated Contracts

‘ I 1000 Satoshi (Fees only) Xy COV(A COV(B
" \’%&I() (B)

100 Bitcoin
A COV(F) n
wlfﬂ) CxF_)/ I___I
Ch "’F

F

The Deli Problem

* You want to buy some deli-meats
and prepared foods

— But the line 1s blocking the counter
—Deli-number congestion control?

Congestion Control

Suppose you have a time sensitive
close operation

Do a cheap “commit-close” txn

More expensive close when excess
bandwidth available

— size(COV CLOSE) < size(CLOSE)
Send both to miner, they can choose!

Overall, more expensive, but faster

Congestion Control

]

rsve | [Arice | rsve | [o0]

Congestion Control

COV(Close Bob) |<' ')l COV(Close Alice) ‘
4 “

4 S
& D

. * x,
f’ 4 * Y *
*
L)
L4
Q’C\ . > " *
(;o» l close Bob l <°<‘,\ 7 l close Alice l <°c,\

rsve | [Arice | rsve | [o0]

Congestion Control

COV(Close Bob) |<’ ')l COV(Close Alice) ‘
. A

>
-
- =
- B

&

o -
- -*

*

*
» []

£ 4
’ Q’C\ . ‘l'”

e l close Bob l D 7 l close Alice l RO

rsve | [Arice | rsve | [o0]

Et€C

Inductive Execution
—Start from the last transaction up

Single Induction Execution

—run forward, except for first step
run as above

Rate Limited Rollback
Traditional M-of-N timeouts

Quality of Service Matters

* We can’t just make protocols more
resource-efficient, we need to
make them work better when
resources are constrained

“Secure Contracts
Isolate Value”

* Gilve your friend the keys to your
car

—but not the garage door opener

— because you can open the garage door
from your phone

 That Bitcoin transaction propagate
value makes incentives harder

Covenants Are Not Evil

There are strong reasons to fear
general-purpose covenants, but
they still are worth consideration

VUTX0-only COV 1is low risk

Bitcoin Must Pick Battles

* Tension between security and
complexity

» Keep scripts simple predicates!

* Better higher-order inter-output
interaction may be safer

