
BTCSpark:

Scalable Analysis of the Bitcoin Blockchain using

Spark

Jeremy Rubin
jr@mit.edu

December 16, 2015

1 Introduction

There is a large demand in the Bitcoin research ecosystem for high quality,
scalable analytic software. Analysis can help developers quantify the risks and
benefits of modifications to the Bitcoin protocol, as well as monitor for errant
behavior. Historians might use Blockchain analysis to understand how various
events impacted on chain activity. Corporations can use analysis to understand
their customers better1. To quote Madars Virza, Co-Inventor of Zerocash and
researcher at MIT CSAIL, “I need to quickly prototype ideas for my research,
but parsing the Blockchain for each project is an arduous task, so I’m forced
to speculate. The research world is in great need for programmable Blockchain
analysis tools.”

In order to serve this need, I have developed BTCSpark for my Large Scale
Systems (6.S897) final project under Matei Zaharia. BTCSpark is a layer on top
of Apache Spark for analyzing the Bitcoin Blockchain. It provides an easy to
use, flexible, and good performance environment for researchers and developers
to query the Blockchain and to build Blockchain analysis tools. BTCSpark is
open source software, in contrast to almost all other user-friendly Blockchain
analysis tools available today.

BTCSpark can be said to be a forward thinking project. Currently, the
Bitcoin Blockchain is 50 GB – certainly feasible to fit it all into memory. How-
ever, as the Blockchain grows, and as users of the Blockchain call for it to grow
at a faster rate, there will be more and more data. Not only that, but the
Blockchain data is in a minimal data format. Fully expanding all of the connec-
tions and richness of the data set can require much more memory, even when
the underlying set is only 50GB (considering each transaction as a node with
potentially

1Sadly, Bitcoin lacks strong anonymity guarantees

1

With any luck, BTCSpark will serve as the de facto way for researchers to
perform and share reproducible Blockchain analysis.

Before reading this paper, I recommend reviewing Appendix A if you are
not highly familiar with Bitcoin, it provides some bare bones information about
the protocol and data available.

2 Previous Work

A lot of the work on this topic is either not being done or closed source and
secret as API based companies want to sell their analysis capabilities and miners
gain competitive advantages by being able to execute these rules more efficiently.
However, there are several related categories of prior art.

2.1 Block Explorers

Generally, there is a class of websites which provide tools to analyze the blockchain
called block explorers. There are numerous examples [1] [2] [3] [4] [5] [6].

Many block explorers are just open source frontends and proprietary back-
ends. It is unclear how performant the backend service is. Worryingly some of
them have been faulted for improper behavior [11]. Academics doing research
in the space have been critiqued for their reliance on block explorers for this
reason [14]. There is some variety in offered features, but generally the API is
somewhat consistent. Furthermore, the APIs do not allow for highly customized
queries as may be needed.

2.2 Blockparser

Blockparser [9] is a single machine architecture for parsing and querying the
blockchain. They provide the following runtimes for various operations on
a generic ubuntu server with 8GB of RAM, performed in June 2012. The
Blockchain was around 1GB at this point, now it is 44GB, so operations are
likely much more than 40 times slower, as the entire chain can no longer fit into
memory trivially. Figure 1 gives some expected run times showing what amount
of time it might take to run, if it scales perfectly linearly or with an additional
factor of 2 for GC overhead. Furthermore, such a solution is not robust for the
future. The Bitcoin blockchain continues to grow, and infrastructure needs to
be ready and available for when it does.

2

1 GB Input 40GB Input 40GB Input Description
No Overhead ×2 Overhead

Time (seconds) Time (minutes) Time (minutes)

1 0.66 1.33 Compute simple blockchain stats,
full chain parse

20 13.33 26.66 Extract all transactions
for a popular address
Compute the closure of an address,

20 13.33 26.66 that is the list of addresses that
provably belong to the same person
Compute and print the balance

30 20 40 for all keys ever used in a TX
since the beginning of time

Figure 1: Expected bounds on BlockParser performance

2.3 Bitcoin Node Software

There are various implementations of Bitcoin node software which may be rele-
vant to this project. All nodes provide some API by which blocks, blockheaders,
and pending transactions can be queried. There are no great performance com-
parisons available among implementations, but Bitcoin-Core is likely the most
performant presently.

2.3.1 ACINQ

ACINQ is a Scala Bitcoin library [7]. ACINQ is in Beta and not ready for full
use.

2.3.2 Bitcoinj

Bitcoinj is a Java implementation of the Bitcoin protocol [8]. There are some
concerns over the correctness of some features in the code, but the core func-
tionality seems fine.

2.3.3 btcd

Btcd is a golang implementation of the bitcoin protocol [10]. It aims to be
bug-for-bug compliant with Bitcoin core.

2.3.4 Bitcoin-Core

Bitcoin-Core is the main implementation of Bitcoin.

3

cdef class LazyTransactionInput:

cdef bytes a

cdef size_t offset

cdef uint32_t i

def __cinit__(self , bytes a, size_t o, uint32_t i):

self.a=a

self.offset = o

self.i = i

def __call__(self):

return TransactionInput.of_buffer(self.a,

&self.offset , self.i)

def __reduce__(self):

return (self.__class__ , (self.a,

self.offset , self.i))

Figure 2: An example of a lazy object, which only stores the offset and a pointer
to the buffer needed

2.3.5 Relay Only Node

Matt Corallo has a relay only node network he built which is not fully verifying
but provides much faster block and transaction propagation than that of alter-
natives. By connecting BlockSpark to the Relay Only network, a performance
advantage could be gained if it is to be used in a streaming context. Accord-
ing to Corallo, “It is in use in one way or another by the majority of major
miners” [12].

2.4 Academic Analysis

Fergal et al have a great analysis paper, but it has no performance informa-
tion [13]. It seems the authors have gone on to found QuantaBytes to make
their tools available.

Adi Shamir has a bitcoin analysis paper, but it also lacks performance in-
formation [15]. His analysis face harsh criticism for using unreliable block ex-
plorers [14]. Their code is not available.

3 Design

BTCSpark will, naturally, be using Apache Spark as a basis of it’s design. The
general idea will be to develop a Bitcoin Blockchain parsing library that inte-
grates well with spark, and then run it on an Amazon AWS Spark cluster. The
Bitcoin Blockchain data will be manually loaded from a user owned Bitcoin Node
– this is important so that the data is correct, to address Garzik’s complaint.
The library will take advantage of two key concepts to gain performance.

4

def TOAD(self):

self.fetch_chain (). map(unlazy)\

.flatMap(lambda b: b.txns)\

.map(unlazy). flatMap(lambda txn:

map(lambda txo:

(txo.value & ~0x3FFF , 1),

txn.tx_outs.map(unlazy)))\

.reduceByKey(lambda x,y: x+y)\

.saveAsTextFile(sb.output_to("TOAD"))

Figure 3: The TOAD Benchmark

3.1 Laziness with Eager Free

The code will not create objects until it is absolutely necessary. Even though
the data, being stored in serial without indexes, often requires a full parse in
order to get the offsets, by not allocating objects performance gains can be re-
alized. Furthermore, lazy allocation will eagerly free its objects (not memoizing
the computation), as once offsets are computed it is easy to recompute the ob-
jects needed, and freeing the memory for other computations will be good for
performance. Figure 2 shows what one of the Lazy objects looks like – the real
object, and it’s sub objects only get allocated on “ call ”.

3.2 Cython

Cython is a tool for Python which can compile a dialect of Python to C, and
compile that C to a shared object which can be imported as a normal Python
Library. This Cythonized version is typically much faster, even with minimal
modifications as it removes interpretation overhead. With more modification,
the use of native C types can allow the compiler to make even greater optimiza-
tions. BTCSpark uses Cython to improve performance at the library level.

4 Performance

4.1 Benchmarks

4.1.1 Transaction Output Amount Distribution

In Bitcoin, each transaction output specifies a an amount of bitcoin to associate
with itself subsubsection A.2.5. The Transaction Output Amount Distribution
Benchmark, or TOAD for short, buckets the transactions by value, ignoring the
bottom 14 bits (about 10 cents USD as of December 16, 2015).

This is a great benchmark for figuring out the performance of this system
because it looks at a lot of the data (all the transaction outputs) and is useful
for showing that laziness does not have high overheads.

The output of the TOAD analysis is shown in Figure 4.

5

Figure 4: Output of the TOAD function

4.1.2 BIP100

In Bitcoin, protocol changes are made via the Bitcoin Improvement Protocol
(BIP), and are assigned numbers. BIP 100 had miners voting for protocol
changes by putting the text “BIP100” into the script signature subsubsec-
tion A.2.3 of the coinbase transaction 2.

In order to find all of the BIP100 blocks, the BIP100 BenchmarkFigure 5
can be used. This script fetches the chain from hadoop, and then looks at the
first transaction in every block.

This is an excellent measure for emphasizing the effectiveness of lazy evalu-

2https://github.com/jgarzik/bip100/blob/master/bip-0100.mediawiki

def BIP100(self):

self.fetch_chain (). map(unlazy)\

.map(lambda b:

b.txns [0]. tx_ins [0]. signature_script)\

.filter(lambda f: "BIP100" in f)\

.saveAsTextFile(self.output_to("BIP100_Blocks"))

Figure 5: The BIP100 Benchmark

6

ation because only a very small amount of data (one transaction) is needed per
block.

4.2 Eager Implementation

The TOAD and BIP100 benchmarks were run using the eager implementation.
The performance, shown in Figure 6, while not bad, is not fantastic.

Cores Machines TOAD BIP100

10 5 21 19

Figure 6: Running the TOAD and BIP100 Benchmarks on a 5 slave cluster
with eager evaluation. The cluster had the blockchain files available with a
replication factor of 1.

4.3 Laziness

The Lazy implementation brings considerable performance gains to the BIP100
Benchmark. This is because it parses significantly less data than the eager
implementation, which will have to parse the entire block. However, the lazy
implementation does not fair worse than the eager implementation on TOAD,
which suggests that despite having to parse all the offsets twice3, the overhead
is not significant. This confirms the motivation for using laziness in a way that
only saves allocations and keeps memory free is worthwhile.

Cores Machines TOAD BIP100

10 5 21 6.7

Figure 7: Running the TOAD and BIP100 Benchmarks on a 5 slave cluster with
lazy evaluation. The cluster had the blockchain files available with a replication
factor of 1.

4.4 Cythonized

The Cythonized implementation brings further gains in performance as shown
in Figure 8. While the BIP100 Benchmark runs in about 75% of the time, the
TOAD Benchmark takes 40% of the compute time. This is because BIP100 is
mostly IO bound, whereas TOAD has a much more intense computational load.

Cores Machines TOAD BIP100

10 5 8.4 5.0

Figure 8: Running the TOAD and BIP100 Benchmarks using the cythonized
code on a 5 slave cluster. The cluster had the blockchain files available with a
replication factor of 1.

3due to the serialized format

7

4.5 Scalability

To evaluate the scaling performance the lazy cythonized code was run in varying
cluster configurations as shown in Figure 9. This shows that as the number of
machines increases, the speed of the computation decreases exponentially. This
is a fantastic result, and should give confidence that BTCSpark will be a scalable
analysis platform as Bitcoin grows. For reference, scaling analysis was also done
on the same cluster as the earlier section in Figure 10.

Figure 9: Running the TOAD and BIP100 Benchmarks on varying numbers of
Cores and machines, not including the driver. On all runs there was access to
the entire 11 node (master and slaves) hadoop cluster which had 3 replicas of
each blockchain file. See the raw in data Figure 12.

Figure 10: Running the TOAD and BIP100 Benchmarks on varying numbers of
Cores and machines, not including the driver. On all runs there was access to
the entire 6 node (master and slaves) hadoop cluster which had 1 replica of each
blockchain file. Graph is less smooth than Figure 9 as the number of samples
points was smaller. See the raw in data Figure 13.

8

def big_tx(bound):

t = txns(block_objs)\

.flatMap(lambda tx:

[(lambda txo: (tx.tx_id ,

txo.index ,

txo.value ,

txo.pk_script)

)(unlazy(lazy_txo))

for lazy_txo in tx.tx_outs])

fields = [StructField(field_name , _type(),False)

for field_name , _type in

[("txid", StringType),

("index", IntegerType),

("value", LongType),

("script", StringType)]]

schema = StructType(fields)

txo_table = sb.sql.createDataFrame(t, schema)

txo_table.registerTempTable("txos")

big_txs = sb.sql.sql("SELECT * FROM txos where\

value > %s"%bound). collect ()

Figure 11: Using Spark SQL to make a table of all transaction outputs, and
then collecting all transactions above a bound

5 Future Work

5.1 Compare Cython to Scala

It would be interesting to compare performance of these two languages.

5.2 Spark SQL

Preliminarily, BTCSpark is integrated & working with Spark SQL. Figure 11
demonstrates building a table with Spark SQL and filtering for large-valued
output transactions. Performance wise, these queries run with very reasonable
time (Figure 11 ran in 5 minutes on the 10 slave cluster).

5.3 Spark Streaming

Earlier versions of BTCSpark (eagerly evaluating) were compatible with spark
streaming. However, there are a couple difficulties in using spark streaming with
respect to the way that a Bitcoin node adds new blocks. It should be possible
to get this operational with not too much fanfare.

9

5.4 Query Library

Now that the core infrastructure of BTCSpark is operational, it should be feasi-
ble to develop a large library of queries. Over IAP, I may run a small hackathon
to get some friends to write queries for it.

5.5 Visualizations

I began experimenting with Bokeh, a python library for visualization. It’s a
terrific library – visualization is tough to standardize without knowing what
kind of data is incoming, but perhaps I can build some common components for
types of Bitcoin data.

6 Reflections

In reflection, I have high hopes for BTCSpark to serve as a useful basis for the
Bitcoin community. The tool has reasonable performance, and a cluster can
quickly be spun up and running in under an hour. Furthermore, as Bitcoin
continues to grow, BTCSpark will scale with it – as the results have shown, the
system is quite scalable. Hopefully, with more community interest the platform
will develop a mature set of libraries and queries.

With respect to building a distributed system, I am also concurrently taking
Parallel and Numerical computing this semester. My project in that class ended
up being more about a building a fault tolerant system from complete scratch,
and this project more about analysis using existing tools – so it goes. One thing
I noticed is the differences in frustrations: with this project, I found that using a
tool like spark got me 90% of the way to a working product, however, as it always
is, the last 10% takes 90% of the time. Thus I felt like I made little progress this
semester, as lots of time was spent polishing the code, improving performance,
and dealing with digging down into Spark to get the cluster launching facilities
operating properly for certain vagaries. In contrast, in my other project, I
was working from scratch. I made leaps in bounds of progress, implementing
Paxos, a distributed file system, and a mapreduce cluster executor very quickly.
However, once I hit the 90% mark, I then ran into the same final 10% that takes
so much time – various bits of the design were falling apart, performance was
not tolerable, and other issues. Irrespective of the above, I’m certainly happy
with my progress on both projects this semester, just notes on how different
pathways yield different types of results at different rates.

References

[1] https://bitcoinchain.com.

[2] https://blockchain.info.

[3] http://btc.blockr.io/.

10

https://bitcoinchain.com
https://blockchain.info
http://btc.blockr.io/

[4] https://www.blocktrail.com/BTC.

[5] https://live.blockcypher.com.

[6] http://explorer.chain.com.

[7] Acinq. https://github.com/ACINQ/bitcoin-lib.

[8] Bitcoinj. https://github.com/bitcoinj/bitcoinj.

[9] Blockparser. https://github.com/znort987/blockparser.

[10] btcd. https://github.com/btcsuite/btcd.

[11] Satoshi’s coins have not moved. blockchain.info is dead! – red-
dit. https://www.reddit.com/r/Bitcoin/comments/3frn1d/satoshis_

coins_have_not_moved_blockchaininfo_is/.

[12] M. Corallo. http://bitcoinrelaynetwork.org.

[13] M. H. Fergal Reid. An analysis of anonymity in the bitcoin system. http:
//arxiv.org/abs/1107.4524.

[14] J. Garzik. Peer review of ”quantitative analysis of the full bitcoin transac-
tion graph”. https://gist.github.com/jgarzik/3901921.

[15] D. Ron and A. Shamir. Quantitative analysis of the full bitcoin trans-
action graph. Cryptology ePrint Archive, Report 2012/584, 2012. http:

//eprint.iacr.org/.

A Bitcoin

A.1 At a Glance

• Bitcoin is a decentralized byzantine fault tolerant e-cash scheme

• Market Cap: About 5 Billion in Bitcoin itself, Billions in Ecosystem Com-
panies as well

• Data Rate: 1 MegaByte/10 Minutes, but the (some of) community would
like to increase this to support more users

• Current Data Size: 400 × 126 MB Block Files

A.2 The Blockchain: Serialized Network Format

A brief overview of the network format follows for convenience.

11

https://www.blocktrail.com/BTC
https://live.blockcypher.com
http://explorer.chain.com
https://github.com/ACINQ/bitcoin-lib
https://github.com/bitcoinj/bitcoinj
https://github.com/znort987/blockparser
https://github.com/btcsuite/btcd
https://www.reddit.com/r/Bitcoin/comments/3frn1d/satoshis_coins_have_not_moved_blockchaininfo_is/
https://www.reddit.com/r/Bitcoin/comments/3frn1d/satoshis_coins_have_not_moved_blockchaininfo_is/
http://bitcoinrelaynetwork.org
http://arxiv.org/abs/1107.4524
http://arxiv.org/abs/1107.4524
https://gist.github.com/jgarzik/3901921
http://eprint.iacr.org/
http://eprint.iacr.org/

A.2.1 Block

magic::uint32 t header length::uint32 t Header Data
hhh

hhh

transaction count::var int Transaction Data
hhh

hhh

A.2.2 Header

version::uint32 t previous block::uint8 t[32] Merkle root::uint8 t[32]

time stamp::uint32 t difficulty::uint32 t nonce::uint32 t

A.2.3 Transaction Input

spends::OutPoint transaction index::uint32 t script length::var int

script::uint8 t[script length] sequence ::uint32 t

A.2.4 Transaction Outpoint

transaction id::uint8 t[32] output index::uint32 t

A.2.5 Transaction Output

value ::int32 t script length::var int script::uint8 t[script length]

12

A.2.6 Transaction

version::uint32 t input count::var int Input Data
hhh

hhh

output count::var int Output Data
hhh

hhh

lock time::uint32 t

B Data

Cores Machines TOAD BIP100

1 1 36 10.0
2 2 19 5.5
3 3 12 4.1
4 4 9.5 3.1
5 5 7.6 2.8
6 6 6.6 2.6
7 7 5.7 2.5
8 8 5.0 2.0
9 9 4.6 2.1
10 10 4.0 2.0
12 10 4.0 1.8
14 10 3.9 1.8
16 10 3.9 1.8
18 10 3.7 1.8
20 10 3.7 1.6

Figure 12: Data for Figure 9

13

Cores Machines TOAD BIP100

10 5 8.4 5.0
8 5 8.8 5.3
6 5 8.9 5.5
5 5 8.8 5.6
3 3 14 6.8
1 1 37 10

Figure 13: Data for Figure 10

14

	Introduction
	Previous Work
	Block Explorers
	Blockparser
	Bitcoin Node Software
	ACINQ
	Bitcoinj
	btcd
	Bitcoin-Core
	Relay Only Node

	Academic Analysis

	Design
	Laziness with Eager Free
	Cython

	Performance
	Benchmarks
	Transaction Output Amount Distribution
	BIP100

	Eager Implementation
	Laziness
	Cythonized
	Scalability

	Future Work
	Compare Cython to Scala
	Spark SQL
	Spark Streaming
	Query Library
	Visualizations

	Reflections
	Bitcoin
	At a Glance
	The Blockchain: Serialized Network Format
	Block
	Header
	Transaction Input
	Transaction Outpoint
	Transaction Output
	Transaction

	Data

