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Abstract

Covenants in Bitcoin represent a method to restrict how and where coins can move.
Functional Encryption (FE) offers an exciting avenue to implement covenants without
native protocol changes. However, FE remains impractical with current cryptographic
tools. In this work, we propose a practical implementation using an oracle-assisted
model that combines off-chain computation, key management, and a BitVM-style eco-
nomic incentive structure to enforce covenants without requiring a Bitcoin soft fork.

1. Introduction
The difficulty in upgrading Bitcoin for smart contracts has inspired innovative approaches to
extending its functionality. FE’d Up Covenants[ Rub24 ] leverage Functional Encryption
(FE) for off-chain enforcement of spending conditions. Bitcoin PIPE[ Kom24 ] builds on this
with a practical implementation, while ColliderScript[ HKLP24 ] offers advanced contract
composition via equality checks based on computing 2-way 160-bit hash collisions 
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 , though

at high computational cost. Finally, BitVM[ Lin23 ] introduces fraud-proof mechanisms to
verify off-chain logic on-chain. These frameworks, each with trade-offs, drive Bitcoin’s pro-
grammability. This paper advances these ideas, presenting a hybrid approach to implement
covenants using cryptographic primitives and economic incentives enforced by a BitVM style
penalty bond.

Shameless plug: This work is funded by  Char , a new protocol designed to support the
growing Bitcoin Layer Two and BitVM ecosystem. If you are inspired by this research
and development, please reach out at the email below – we are actively hiring motivated
individuals to join our team. Or, to just keep in touch, join our  discussion group  .

∗jeremy [dot] L [dot] rubin [at] gmail [dot] com
1leveraging the hardness gap between 2-way and 3-way hash collisions
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1.1. Why FE Isn’t Ready Yet
Functional Encryption (FE), while theoretically powerful, remains elusive for practical de-
ployment. The cryptographic primitives required for secure and efficient FE have not reached
maturity, leaving the direct implementation of FE-based covenants out of reach for now.
While work such as Bitcoin PIPE is promising, it remains to be seen if the computational
costs will be excessive or if the security model (and hardness) will be sufficient.

1.2. Motivation for an Oracle-Assisted Approach
Given the current state of FE, we propose a hybrid approach leveraging existing cryptography
and a novel economic incentive structure. By using an oracle server to run the covenant logic
and cryptographic key-tweaking, we can emulate many of the benefits of FE-based covenants
today. Additionally, we introduce a BitVM-style incentive mechanism to ensure the oracle
adheres to the covenant logic.

1.3. Overview of This Paper
This paper details:

(I) The architecture for an oracle-assisted covenant system.
(II) How the oracle enforces covenants by running the program logic and managing keys.

(III) An economic incentive structure using a BitVM fraud-proof mechanism to hold the
oracle accountable.

2. Oracle-Assisted Covenants

2.1. Architecture
2.1.1. Trusted Oracle Execution

The oracle serves as a trusted intermediary. It generates and manages keys and runs the
covenant program logic. Specifically:

(I) Generate a SECP256K1 Keypair: (k,K)←− KeyGen().
(II) Compute program-specific tweaks for each covenant instance  
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 :

UniquePubKey(K, EI) = Derive(K, Sha256(EI)).

(III) Execute program logic securely within the oracle’s environment and sign conditionally.
2Denoted E for “encumbrance”. We differentiate a covenant primitive, a covenant, and a covenant in-

stance. A covenant primitive, such as OP_CAT isn’t really a particular behavior. A covenant, such as a
vault, is a mere template of behavior built with OP_CAT. And a covenant instance, is a covenant with an
exact selection of parameters and data, such as keys, timeouts, and more. Thus keys must be tied to the
encumbrance instance, with all preset parameters defined, and not a more general program such as “vault”,
unless the template parameters are retrieved during evaluation from e.g. the state caboose.
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2.1.2. Signing Transactions

The oracle signs transactions only if they comply with the covenant logic.
There is no need to verify a direct relationship between the program-tweaked key of

the encumbrance instance and the transaction itself. This is because the transaction input
already commits to the key it should verify against. In the worst-case scenario, an attacker
might create a signature valid for that key, but such a signature would still be unable to
spend the coins if it is not bound to the transaction. If it were bound, the program instance
would be valid.

In simpler terms, the oracle only certifies that the transaction complies with the specified
program—it does not certify that the transaction requires the provided signature.

1

2 fn oracle_sign(&self,
3 public_key: PublicKey,
4 transaction: Transaction,
5 witness: Witness) -> Option<Signature> {
6 let program_hash = SHA256(self.encumbrance_instance.program);
7

8 if self.encumbrance_instance(transaction, witness) {
9 let derived_key = Derive(public_key, program_hash);

10 Some(Sign(derived_key, transaction))
11 } else {
12 None
13 }
14 }

Strengths and Limitations Advantages:
(I) Non-Interactive Contract Specification: Bitcoin scripts for a particular encum-

brance can be defined offline without requiring any interaction (after establishing root
public key) with the oracle server. This also means covenant keys can be generated
from smart contract code without requiring connectivity.

(II) Stateless operation: Oracles don’t need to track any external database, just decide
to sign based purely on local information. The oracle’s role is purely mechanical,
simplifying implementation and minimizing attack vectors.

(III) Multi-party flexibility: Federated multisig configurations can be used to spread out
trust assumptions and increase liveness.

(IV) Presigning Friendly: For a known state transition, signatures can be generated
ahead of time and stored till use.

Limitations:
(I) Trust assumptions: There may or may not be oracles worthy of trust.

(II) Liveness Except in cases that are enumerable, like CTV, users have to rely on oracles
for liveness and may wish to have a longer term failover plan.
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OP_CAT and Generalized Conditions For covenants involving concatenation or com-
putational predicates (e.g., OP_CAT or OP_CSFS), the oracle can handle these conditions
off-chain. This can be achieved by defining the encumbrance instance as the corresponding
Bitcoin script and treating the witness data as the transaction’s witness. The oracle then
validates the transaction against the script, and if it passes, signs the transaction. The script
interpreter used can have whichever opcodes are desired.

For example, the below snippet demonstrates how this might be accomplished.
1 fn oracle_sign_for_cat(&self,
2 public_key: PublicKey,
3 transaction: mut Transaction,
4 witness: Witness) -> Option<Signature> {
5 // Derive the tweaked key based on the program hash
6 let program_hash = SHA256(self.encumbrance_instance.program);
7 let tweaked_key = Derive(public_key, program_hash);
8

9 // Update the transaction input with the encumbrance program and witness
10 transaction.inputs[0].witness_program = self.encumbrance_instance.program;
11 transaction.inputs[0].witness = witness;
12

13 // Validate the transaction against the provided script flags
14 if validate_tx(transaction, SCRIPT_VERIFY_CAT | defaultflags) {
15 Some(Sign(tweaked_key, transaction))
16 } else {
17 None
18 }
19 }

State-Based Covenants Stateful covenants, such as roll-ups, may involve the oracle
maintaining external state to reference during execution. However, such designs introduce
the risk of creating a system that functions as an opaque “black box”, reducing transparency
for users. An alternative approach leverages cryptographic commitments embedded within
the transaction itself to manage state transitions.

This methodology, referred to as the state caboose, operates as follows: the final output
of a transaction includes an OP_RETURN data carrier, which commits to a hash or a
compact data vector representing the program’s state variables or database. The funds are
encumbered under a fixed program P . When P is spent, its covenant logic retrieves the
caboose data from its prior state and subsequently updates or re-commits to a new caboose
reflecting the modified state. The primary output of the transaction continues to commit to
the same program P , ensuring state integrity and continuity.

The following example illustrates the logic required for a state caboose to manage a
unilateral exit in a shared UTXO context, encompassing both state retrieval and update
mechanisms.
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1 fn caboose_read_write(&self, tx: &mut Transaction, input_index: usize) {
2 // Retrieve the parent transaction from the witness data
3 let parent_tx = tx.inputs[input_index].witness[0];
4

5 // Ensure the input references the parent transaction correctly
6 assert_eq!(tx.inputs[input_index].txid, parent_tx.txid());
7 let caboose_commit: CabooseCommit =
8 parent_tx.outputs
9 .last()

10 .unwrap()
11 .scriptPubKey;
12

13 // Extract the caboose from the witness data
14 let caboose: Caboose = tx.inputs[input_index].witness[1];
15

16 // Verify that the caboose matches the committed state
17 assert_eq!(caboose.commit(), caboose_commit);
18

19 // Extract and unpack the state row from the caboose
20 let row: (Amount, (Key, Amount)) = caboose.get_row();
21 let (balance, (user, user_balance)) = row;
22

23 // Retrieve additional witness data:
24 // signature, amount, and recipient address
25 let signature: Signature = tx.inputs[input_index].witness[2];
26 let amount: Amount = tx.inputs[input_index].witness[3];
27 let recipient: Address = tx.inputs[input_index].witness[4];
28

29 // Ensure the amount to be sent does not exceed the user’s balance
30 assert!(amount <= user_balance);
31

32 // Update the transaction outputs
33 tx.outputs[0].scriptPubKey = tx.inputs[input_index].scriptPubKey;
34 tx.outputs[0].amount = balance - amount;
35

36 tx.outputs[1].scriptPubKey = recipient.to_scriptpubkey();
37 tx.outputs[1].amount = amount;
38

39 // Write the updated state row into a new caboose
40 let updated_row = (balance - amount, (user, user_balance - amount));
41 let new_caboose = caboose.write_row(updated_row);
42
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43 // Commit the new caboose state to the final transaction output
44 tx.outputs[2].scriptPubKey = new_caboose.commit();
45 }

Zero-Knowledge Encumbering As the complexity of covenant computation increases,
particularly when verifying constraints for multiple users, the cost of enforcing such condi-
tions on-chain can become prohibitively high.

To address this, the encumbrance program can be represented as a zero-knowledge ver-
ifier. In this approach, the witness data required to satisfy the covenant is replaced by a
zero-knowledge proof that is computationally equivalent to the native program. Employing
zero-knowledge proofs (ZKPs) effectively reduces the computational burden on the oracle
when handling more sophisticated covenants.

Additionally, this method enhances privacy by obfuscating sensitive details. For instance,
in roll-up applications, the use of ZKPs allows balances and other sensitive data to remain
undisclosed while still ensuring the validity of the covenant’s conditions.

Careful consideration must be given to ensuring that when zero-knowledge (ZK) argu-
ments are employed to facilitate state transitions within a contract, all relevant parties retain
access to the information necessary to propagate subsequent state transitions.

This requirement is particularly critical in scenarios where state transitions depend on
cryptographic commitments, as these commitments may obscure underlying data while pre-
serving verifiability. If any party lacks the requisite inputs or derived proofs to generate the
next valid state, the contract could become unusable, leading to deadlocks or loss of funds.

Composable Covenants Covenants can be composed within the creation of the encum-
brance instance arbitrarily.

However, in situations where it is desired to isolate different checks to different oracles,
covenants can be composed with boolean monotone logic (i.e., AND and OR only).  
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Multiparty Security and Liveness Composability extends to joining identical checks
from multiple oracles for the purpose of minimizing risk of a single oracle failure. The
semantics of AND under such a federation are such that if any single oracles is honest, the
covenant is enforced. This is very useful in contexts where users of the covenant are available
to produce signatures as well, as the trust can be minimized. However, with more signers
under AND, the risk of a liveness fault increases as if a signature is refused to be provided
it may not be.

It may be desirable to compose the covenants such that after a long period of contested
non-liveness, the coins are distributed to stakeholders or otherwise saved. Such solutions can
be quite sophisticated, the discussion of which is outside the scope of this paper.

3It is possible that using MuSig or another multi-party computation scheme, multiple oracles keys might
be condensed into a single key, which they sign interactively with to produce a single signature. Using MuSig
in this way is an optimization that needlessly complicates the exposition of the concepts in this paper, but
would be worth developing for real-world deployments.
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These extensions highlight the flexibility of the oracle-assisted covenant framework. While
not as secure as native protocol changes, it provides a practical and experimental pathway
for deploying advanced covenant functionality today. Further, these covenants are quite
efficient as arbitrary rules can be enforced with a single on-chain signature.

2.1.3. Emulating CTV with Oracle-Assisted Covenants

To provide a concrete illustration of the generic framework described above, we will examine
its application to CheckTemplateVerify (CTV). CTV is a proposed Bitcoin opcode that
enforces transaction templates, making it a suitable example for demonstrating how the
framework handles covenant enforcement. Unlike other applications that require additional
witness data to validate state transitions, CTV uses the transaction itself as the witness,
ensuring that the template’s structure inherently validates compliance. By applying the
oracle-assisted model to CTV, we can showcase the practical steps involved in replicating its
functionality. Similar functionality was implemented in Sapio[ Rub21 ] to emulate CTV.

Key Tweak and Emulation Workflow Oracle-assisted covenants replicate CTV func-
tionality by enforcing transaction templates through derived keys and off-chain logic. The
workflow proceeds as follows:

(I) Oracle Initialization: The oracle generates a root public key Kctv and commits to
using it exclusively under predefined covenant rules.

(II) CTV Emulation with Templates: A user provides the oracle with a transaction T
and a computed template hash H, derived deterministically (e.g., H = DefaultCheckTemplateV erifyHash(T ))
to define the exact transaction structure to enforce. There is no additional witness data,
V , required.

(III) Key Tweak for Template Enforcement: The oracle derives a tweaked key CT from
the root public key K using H:

CT = Derive(Kctv, H).

This derived key replaces the native CTV clause in the transaction script.
(IV) Transaction Signing: To spend the output, the user submits the unsigned trans-

action to the oracle. The oracle recomputes the hash H, derives the private key cT

(corresponding to CT ) and signs.
This method achieves a tight functionality mapping to CTV. By relying on deterministic

hashing and key tweaks, the oracle enforces spending conditions structurally, minimizing the
need for intelligent server logic.

Public Key Derivation via BIP-32 and Hash Functions In this approach, tweak
derivation leverages BIP-32 hierarchical deterministic (HD) keys and a structured hash-to-
path conversion process. On initialization, a server generates a seed k and derives a root
public key K, which it then publishes. Users pre-plan a transaction T and compute a Check-
TemplateVerify (CTV) hash H = DefaultCheckTemplateV erifyHash(T ) representing the
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specific template logic to enforce. To derive a unique key corresponding to H, the hash is
converted into a BIP-32 derivation path D consisting of eight 32-bit unsigned integers (u32)
and one 8-bit integer (u8). See Appendix  A for details of the conversion process. Although
other tweaking mechanisms work, BIP-32 is preferred because it simplifies compatibility with
standard signing devices. Importantly, as the derivation is unhardened, it can be computed
without contacting the Oracle server.

2.2. Economic Incentive: Fraud-Proof with BitVM
As outlined in the preceding sections, the Covenant Oracle is not inherently penalized for
signing transactions that deviate from its intended programming or specified encumbrances.

To enforce honest behavior and accountability, we propose a BitVM-style mechanism
that enables operators to detect and prove instances of oracle misconduct, effectively disin-
centivizing fraudulent activity.

However, a modification to the oracle’s design is necessary to ensure that the witness
data used in the transaction is accessible to the BitVM operator. Without this adjustment,
a malicious fraud proof could exploit the system by falsely claiming an alternative witness
or by asserting the validity of a signature without providing the associated witness data.
Potential alternatives and mitigations for this limitation are discussed further in Section  B .

The Covenant Oracle first declares their key K and type of covenant they are able to
process, E .
E is restricted such that their must always be a caboose output, of which the Oracle

reserves the last data push for arbitrary use.
Then they have the following functions:

1 fn get_instance(self,
2 e:Encumberance,
3 args: Args)
4 -> Program {
5 e.compile_with(args)
6 }

The oracle signing function is modified to expect the caboose to contain the witness, and
to sign the witness data in the caboose.

1 fn oracle_sign(&self,
2 public_key: PublicKey,
3 transaction: Transaction)
4 -> Option<Signature> {
5 // Prepare the transaction and extract the witness from the caboose
6 let (transaction_for_verification, witness) = {
7 let mut cloned_tx = transaction.clone();
8 let mut caboose = cloned_tx.outputs.last()?.as_caboose();
9 let witness = Witness::deserialize(caboose.pushes.pop()?);

10 (cloned_tx, witness)
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11 };
12

13 // Verify the encumbrance instance and sign the transaction if valid
14 if self.encumbrance_instance(transaction_for_verification, witness) {
15 let program_hash = SHA256(self.encumbrance_instance.program);
16 let tweaked_key = Derive(public_key, program_hash);
17 Some(Sign(tweaked_key, transaction))
18 } else {
19 None
20 }
21 }

Now, a function is defined which will detect if the transaction was signed by the oracle
when the covenant did not pass.

1 fn oracle_malfunctioned(self,
2 k:PublicKey,
3 mut tx:Transaction,
4 s: Signature,
5 e:Encumberance,
6 a: Args
7 ) -> bool {
8 let e_i = self.get_instance(e, a);
9

10 let v: Witness = tx.out[-1].as_caboose().pushes[-1].deserialize();
11 tx.out[-1].as_caboose().pushes.pop();
12 if e_i(tx, v) {
13 // no malfunction, there should be a sig
14 return false
15 }
16 // if signed, malfunction
17 return verify_sig(Derive(K, SHA256(e_i.program)), tx, s);
18 }

Subsequently, the function oracle_malfunctioned should be deterministically trans-
formed into a circuit representation, denoted as G, which can be expressed using NAND
gates. This representation enables its integration into a BitVM framework.

The Covenant Oracle should engage a BitVM Operator to create a BitVM instance, uti-
lizing pre-signed transactions, which incentivizes the operator by offering payment if they
can produce a valid witness proving that the Covenant Oracle has fraudulently signed a
transaction, as determined by the circuit G. Conversely, if the Covenant Oracle can success-
fully refute the operator’s claim by disproving the execution of G, the Oracle is entitled to
redeem its locked funds.

In addition, the BitVM Operator is required to post a bond to ensure honest behavior.
If the operator equivocates—by revealing more than one bit during execution or providing
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an incorrect bit—they risk forfeiting their bond, with the associated funds being burned as
a penalty. This mechanism enforces integrity and accountability within the BitVM dispute
resolution process.

To redeem the bond, a pre-signed transaction exiting the protocol must be broadcast
on-chain. This action initiates a delay clock of duration τ , enforced through built-in lock
times. The delay provides sufficient time for any evidence of misbehavior, such as fraudulent
behavior or equivocation, to be published and adjudicated before the bond can be claimed.

Users of the system are empowered to ensure accountability by submitting evidence of
misconduct to the Integrity Oracle if the Covenant Oracle ever cheats. In such scenarios,
users gather the necessary proof, which typically includes the fraudulent transaction, its
associated signature, and any witness data required to demonstrate a breach of the covenant
logic. This evidence is then submitted to the Integrity Oracle, which acts as an impartial
adjudicator.

The Integrity Oracle validates the claim by re-executing the covenant logic against the
submitted evidence. If the claim is substantiated, the Covenant Oracle is penalized via the
slashing of the bond. This mechanism ensures that dishonest behavior carries significant
financial consequences, improving the integrity of the system and deterring potential fraud.

3. Discussion
The proposed mechanism provides a robust economic framework designed to enforce the
integrity of the Covenant Oracle and deter dishonest behavior. At the outset, the oracle
locks funds into a Bitcoin bond, thereby committing to adhere to the specified covenant
logic. This bond serves as both a guarantee of good behavior and a source of financial
accountability. If the oracle signs a transaction that violates the covenant’s conditions, any
participant can present proof of the violation, such as the fraudulent transaction and its
signature, to initiate a dispute process against the bond.

Upon verification of valid proof, the funds locked in the bond are subject to punitive
measures. Depending on the implementation, the funds may be burned, distributed as fees,
or allocated to a designated fraud-proving entity or restitution fund, thereby disincentivizing
fraudulent activity. To ensure fairness, the oracle retains a pre-signed transaction, allowing
it to redeem the bond in two distinct phases, provided no valid evidence of misbehavior is
presented within the designated dispute period.

Additionally, the mechanism incorporates safeguards against dishonesty by the BitVM
operator. The operator is required to post a stake, which is forfeited if they act dishonestly,
such as by equivocating or providing false proofs during the resolution process. This ensures
mutual accountability between the oracle and the operator, creating a balanced incentive
structure.

This mechanism provides a robust and transparent framework for enforcing compliance
with covenant logic. By integrating financial penalties and well-defined verification processes,
it ensures that all parties have aligned incentives, fostering both the integrity and reliability
of the oracle’s operations.
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3.1. Advantages of the Oracle-Assisted Model
(I) Practical Implementation Today: This model works with existing cryptographic

and blockchain tools.
(II) No Soft Fork Required: All computation occurs off-chain, avoiding the need for

consensus-layer changes.
(III) Economic Accountability: The fraud-proof mechanism ensures trust in the system,

even if the oracle is untrusted.
(IV) Optimistic: In the happy path, none of the fraud proof logic is ever executed

3.2. Drawbacks and Limitations
(I) Trust in Oracles: Although mitigated by the fraud-proof mechanism, the model still

requires reliance on an oracle’s infrastructure.
(II) Complexity: The system introduces additional moving parts, such as the oracle and

the fraud-proof process.
(III) Data Availability: The requirement to post the witnesses on-chain means no space

savings compared to bespoke opcodes for covenants

3.3. Future Directions
(I) Continued research into practical FE implementations to replace the oracle model.

(II) Enhancing the fraud-proof mechanism for better scalability and usability.
(III) Exploring other applications of this hybrid model, such as privacy-preserving covenants.

4. Conclusion
While native Functional Encryption remains impractical, the proposed oracle-assisted model
enables covenants today. By combining off-chain computation, and an economic incentive
mechanism, we achieve a flexible and enforceable covenant system that adheres to Bitcoin’s
core principles.

5. Acknowledgments
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checking might be applied to ColliderScript[ Hei24 ].
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Appendices
A. Hash to Vec
In order to create a key per program, we need to tweak the root key by the program. While
it’d be possible to apply the tweaks in many ways at lower cost, e.g. using the Taproot
tweak formula, we opt for a BIP-32 compatible key derivation to maximize compatibility
with various signing devices. This section describes the algorithm to convert from program
hash to derivation path.

The derivation format consists of 9 u32 values, where the top bit of each value is set to 0
(for unhardened derivation). The process begins by splitting the hash (big-endian) into eight
u32 segments and masking off the top bit of each. These masked values form the primary
path segments.

To maintain all entropy, the top bits of the eight u32 values are extracted and combined
into a ninth u32. This ensures the derivation path retains information lost from masking
while adhering to the ChildNumber format, which uses the top bit to indicate hardened
or unhardened keys. This structured approach is necessary to avoid conflicts with the u31
encoding of ChildNumber.

1

2

3 fn hash_to_child_vec(h: Sha256) -> Vec<ChildNumber> {
4 let a: [u8; 32] = h.into_inner();
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5 let b: [[u8; 4]; 8] = unsafe { std::mem::transmute(a) };
6 let mut c: Vec<ChildNumber> = b
7 .iter()
8 // Note: We mask off the top bit.
9 // This removes 8 bits of entropy from the hash,

10 // but we add it back in later.
11 .map(|x| (u32::from_be_bytes(*x) << 1) >> 1)
12 .map(ChildNumber::from)
13 .collect();
14 // Add a unique 9th path for the MSB’s
15 c.push(
16 b.iter()
17 .enumerate()
18 .map(|(i, x)| (u32::from_be_bytes(*x) >> 31) << i)
19 .sum::<u32>()
20 .into(),
21 );
22 c
23 }

B. Data Availability (DA)
It is expensive to force the data to be included in the caboose, as it uses valuable base block
space.

Instead of utilizing the caboose, the witness could also be committed via a field such as
the Annex. This is preferable because the Annex receives the witness discount. However,
the Annex is not presently defined and recommended against for use.

As an alternative, were there a trusted DA layer, then the caboose could include only an
attestation from the DA layer, and the oracle_malfunctioned program would just require
that the witness also be provided to the BitVM proof.
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